Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Endurance capability is a key indicator to evaluate the performance of electric vehicles. Improving the energy density of battery packs in a limited space while ensuring the safety of the vehicle is one of the currently used technological solutions. Accordingly, a small space and high energy density battery arrangement scheme is proposed in this paper. The comprehensive performance of two battery packs based on the same volume and different space arrangements is compared. Further, based on the same thermal management system (PCM-fin system), the thermal performance of staggered battery packs with high energy density is numerically simulated with different fin structures, and the optimal fin structure parameters for staggered battery packs at a 3C discharge rate are determined using the entropy weight-TOPSIS method. The result reveals that increasing the contact thickness between the fin and the battery (X) can reduce the maximum temperature, but weaken temperature homogeneity. Moreover, the change of fin width (A) has no significant effect on the heat dissipation performance of the battery pack. Entropy weight-TOPSIS method objectively assigns weights to both maximum temperature (Tmax) and temperature difference (DT) and determines the optimal solution for the cooling system fin parameters. It is found that when X = 0:67 mm, A = 0:6 mm, the staggered battery pack holds the best comprehensive performance.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e145677
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P.R. China
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P.R. China
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P.R. China
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P.R. China
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P.R. China
autor
- College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P.R. China
Bibliografia
- [1] R. Ma et al., “Optimization of an Air-cooled battery pack with novel cooling channels based on silica cooling Plates,” Appl. Therm. Eng., vol. 213, p. 118650, 2022, doi: 10.1016/j.applthermaleng.2022.118650.
- [2] J. Cao, J. Feng, X.Fang, Z. Ling, and Z. Zhang, “A Delayed Cooling System Coupling Composite Phase Change Material and Nano Phase Change Material Emulsion,” Appl. Therm. Eng., vol. 191, p. 116888, 2021, doi: 10.1016/j.applthermaleng.2021.116888.
- [3] J. Weng, Y. He, D. Ouyang, X.Yang, G. Zhang, and J. Wang, “Thermal performance of PCM and Branch-structured fins for cylindrical power battery in a high-temperature Environment,” Energy Conv. Manag., vol. 200, p. 112106, 2019, doi: 10.1016/j.enconman.2019.112106.
- [4] D. Kong, R. Peng, P. Ping, J. Du, G. Chen, and J. Wen, “A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient Temperatures,” Energy Conv. Manag., vol. 204, p. 112280, 2020, doi: 10.1016/j.enconman.2019.112280.
- [5] X.Zhu, H. Shi, W. Xu, J. Pan, R. Zheng, and Y. Wang, “An improved air supply scheme for battery energy storage Systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140692, 2022, doi: 10.24425/bpasts.2022.140692.
- [6] N. Wu, X.Ye, J. Li, B. Lin, X.Zhou, and B. Yu, “Passive Thermal Management Systems Employing Hydrogel for the Large-Format Lithium-Ion Cell: A Systematic Study,” Energy, vol. 231, p. 120946, 2021, doi: 10.1016/j.energy.2021.120946.
- [7] R. Zhou, J. Lu, X.Long, Y. Wu, L. Liu, and Y. Liu, “Theoretical model of lithium iron phosphate power battery under high-rate discharging for electromagnetic Launch,” Int. J. Mech. Sci., vol. 1, no. 2, pp. 220–229, 2021, doi: 10.1002/msd2.12014.
- [8] H. Shi et al., “Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations,” Energies, vol. 16, no. 2, p. 876, 2023, doi: 10.3390/en16020876.
- [9] R. Kalbasi, “Introducing a novel heat sink comprising PCM and air – Adapted to electronic device thermal Management,” Int. J. Heat Mass Transfer, vol. 169, p. 120914, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.120914.
- [10] H. Shi, M. Liu, W. Xu, X.Zhu, Y. Zou, and K. Yang, “Optimization on Thermal Management of Lithium-Ion Batteries Using Computational Fluid Dynamics and Air-cooling Methods,” Int. J. Electrochem. Sci., vol. 17, no. 5, p. 220550, 2022, doi: 10.20964/2022.05.46.
- [11] Y. Xu, X.Li, X.Liu, Y. Wang, X.Wu, and D. Zhou, “Experiment investigation on a novel composite silica gel plate coupled with Liquid-cooling system for square battery thermal Management,” Appl. Therm. Eng., vol. 184, p. 116217, 2021, doi: 10.1016/j.appl thermaleng.2020.116217.
- [12] X.Tang, Q. Guo, M. Li, C. Wei, Z. Pan, and Y. Wang, “Performance analysis on Liquid-cooled battery thermal management for electric vehicles based on machine Learning,” J. Power Sources, vol. 494, p. 229727, 2021, doi: 10.1016/j.jpowsour.2021.229727.
- [13] W. Zhang, J. Qiu, X.Yin, and D. Wang, “A novel heat pipe assisted separation type battery thermal management system based on phase change Material,” Appl. Therm. Eng., vol. 165, p. 114571, 2020, doi: 10.1016/j.applthermaleng.2019.114571.
- [14] N. Putra, A.F. Sandi, B. Ariantara, N. Abdullah, and T.M.I. Mahlia, “Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric Vehicles,” Case Stud. Therm. Eng., vol. 21, p. 100655, 2020, doi: 10.1016/j.csite.2020.100655.
- [15] Y. Li et al., “A novel Petal-type battery thermal management system with dual phase change Materials,” Int. J. Heat Mass Transf., vol. 207, p. 123989, 2023, doi: 10.1016/j.ijheatmasstransfer.2023.123989.
- [16] X.Hu, C. Zhu, H. Wu, X.Li, X.Lu, and J. Qu, “Large-scale preparation of flexible phase change composites with synergistically enhanced thermally conductive network for efficient low-grade thermal energy recovery and Utilization,” Composites Part A, vol. 154, p. 106770, 2022, doi: 10.1016/j.compositesa.2021.106770.
- [17] P.R. Tete, M.M. Gupta, and S.S. Joshi, “Developments in battery thermal management systems for electric vehicles: A technical Review,” J. Energy Storage, vol. 35, p. 102255, 2021, doi: 10.1016/j.est.2021.102255.
- [18] D.K. Sharma and A. Prabhakar, “A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric Vehicles,” J. Energy Storage, vol. 41, p. 102885, 2021, doi: 10.1016/j.est.2021.102885.
- [19] N. Zheng, R. Fan, Z. Sun, and T. Zhou, “Thermal management performance of a fin-enhanced phase change material system for the lithium-ion Battery,” Int. J. Energy Res., vol. 44, no. 9, pp. 7617–7629, 2020, doi: 10.1002/er.5494.
- [20] Tauseef-ur-Rehman, H.M. Ali, M.M. Janjua, U. Sajjad, and W. Yan, “A critical review on heat transfer augmentation of phase change materials embedded with porous materials/Foams,” Int. J. Heat Mass Transf., vol. 135, pp. 649–673, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.02.001.
- [21] R. Huang, Z. Li, W. Hong, Q. Wu, and X.Yu, “Experimental and numerical study of PCM thermophysical parameters on Lithium-ion battery thermal Management,” Energy Rep., vol. 6, pp. 8–19, 2020, doi: 10.1016/j.egyr.2019.09.060.
- [22] J. Zhang et al., “Characterization and experimental investigation of aluminum Nitride-based composite phase change materials for battery thermal Management,” Energy Convers. Manage., vol. 204, p. 112319, 2020, doi: 10.1016/j.enconman.2019.112319.
- [23] H. Nazir et al., “Recent developments in phase change materials for energy storage applications: A Review,” Int. J. Heat Mass Transf., vol. 129, pp. 491–523, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.09.126.
- [24] R. Fan, N. Zheng, and Z. Sun, “Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery Packs,” Int. J. Heat Mass Transf., vol. 166, p. 120753, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120753.
- [25] A. Verma and D. Rakshit, “Performance analysis of PCM-fin combination for heat abatement of Li-ion battery pack in electric vehicles at high ambient Temperature,” Therm. Sci. Eng. Prog., vol. 32, p. 101314, 2022, doi: 10.1016/j.tsep.2022.101314.
- [26] S. Ambekar, P. Rath, and A. Bhattacharya, “A novel PCM and TCE based thermal management of battery Pack,” Therm. Sci. Eng. Prog., vol. 29, p. 101196, 2022, doi: 10.1016/j.tsep.2022.101196.
- [27] X.Qi et al., “Optimization and Sensitivity Analysis of Extended Surfaces during Melting and Freezing of Phase Changing Materials in Cylindrical Lithium-Ion Battery Cooling,” J. Energy Storage, vol. 51, p. 104545, 2022, doi: 10.1016/j.est.2022.104545.
- [28] I.B. Mansir, N. Sinaga, N. Farouk, M. Aljaghtham, C. Diyoke, and D. Nguyen, “Numerical simulation of dimensions and arrangement of triangular fins mounted on cylindrical Lithium-ion batteries in passive thermal Management,” J. Energy Storage, vol. 50, p. 104392, 2022, doi: 10.1016/j.est.2022.104392.
- [29] R. Akula and C. Balaji, “Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat Sinks,” Appl. Energy, vol. 316, p. 119048, 2022, doi: 10.1016/j.apenergy.2022.119048.
- [30] V.G. Choudhari, A.S. Dhoble, and S. Panchal, “Numerical analysis of different fin structures in phase change material module for battery thermal management system and its Optimization,” Int. J. Heat Mass Transf., vol. 163, p. 120434, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120434.
- [31] Z. Chen, X.Li, J. Zhang, and L. Ouyang, “Simulation and analysis of heat dissipation performance of power battery based on phase change material enhanced heat transfer variable fin Structure,” Numer. Heat Transfer, Part A, vol. 80, no. 11, pp. 535–555, 2021, doi: 10.1080/10407782.2021.1959834.
- [32] D. Bernardi, E. Pawlikowski, and J. Newman. “A General Energy Balance for Battery Systems,” J. Electrochem. Soc., vol. 132, no. 1, pp. 5–12, 1985, doi: 10.10.1149/1.2113792.
- [33] J. Liu, F. Tavakoli, S.M. Sajadi, M.Z. Mahmoud, B. Heidarshenas, and H. ¸S. Aybar, “Numerical evaluation and artificial neural network modeling of the effect of oval PCM compartment dimensions around a triple Lithium-ion battery pack despite forced Airflow,” Eng. Anal. Bound. Elem., vol. 142, pp. 71–92, 2022, doi: 10.1016/j.enganabound.2022.05.006.
- [34] M. Fadl, and P. Eames, “A Numerical Investigation into the Heat Transfer and Melting Process of Lauric Acid in a Rectangular Enclosure with Three Values of Wall Heat Flux,” Energy Procedia, vol. 158, pp. 4502–4509, 2019, doi: 10.1016/j.egypro.2019.01.761.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fa79841-88d5-47dc-b21c-22f9d2f0b170