PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of readiness of the technical system using the semi-Markov model with selected sojourn time distributions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanization of forestry work is crucial in forest management, and the specific nature of the tasks performed requires reliable machines with a high level of technical readiness. Therefore, models describing the exploitation process of multi-operational machines used to obtain wood raw materials, and especially assessing the level of their technical readiness, are extremely important. For multi-tasking objects performing random activities in given time intervals, calculating readiness measures is a complex issue. Forecasting subsequent operational states and their durations allows (if the Markov property is met) to predict the behavior of technical objects and schedule work. In addition to identifying the sequence of states, it is also important to identify the sojourn time in these states. This article presents a method for identifying the semi-Markov process and then assessing the technical readiness of a Harvester machine. This allowed for conclusions regarding the timely completion of assigned tasks and also made it possible to adjust the activities carried out to the requirements of forest management.
Rocznik
Strony
art. no. 191545
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Bibliografia
  • 1. Duhovnik, A., Balabanova, Y., Lushpaeva, M., Gaiduk, A., & Nurullin, A. (2023). Analysis of promising methods for felling for forest care by multi-operation systems of machines. In E3S Web of Conferences (Vol. 390, p. 07043). EDP Sciences. https://doi.org/10.1051/e3sconf/202339007043
  • 2. La Hera, P., Morales, D. O., & Mendoza-Trejo, O. (2021). A study case of Dynamic Motion Primitives as a motion planning method to automate the work of forestry cranes. Computers and Electronics in Agriculture, 183, https://doi.org/10.1016/j.compag.2021.106037.
  • 3. Munis RA, Almeida RO, Camargo DA, da Silva RBG, Wojciechowski J, Simões D. Machine Learning Methods to Estimate Productivity of Harvesters: Mechanized Timber Harvesting in Brazil. Forests. 2022; 13(7):1068. https://doi.org/10.3390/f13071068
  • 4. Söderberg, J., Wallerman, J., Almäng, A., Möller, J. J., & Willén, E. (2021). Operational prediction of forest attributes using standardised harvester data and airborne laser scanning data in Sweden. Scandinavian Journal of Forest Research, 36(4), 306–314. https://doi.org/10.1080/02827581.2021.1919751
  • 5. Melander, L., Ritala, R. Separating the impact of work environment and machine operation on harvester performance. Eur J Forest Res 139, 1029–1043 (2020). https://doi.org/10.1007/s10342-020-01304-5
  • 6. Dvořák, J., Kováč, J., & Krilek, J. (2020). Ergonomic Operational Working Aspects of Forest Machines. Cambridge Scholars Publishing.
  • 7. Rozporządzenie Ministra Przedsiębiorczości i Technologii z dnia 30 października 2018 r. w sprawie warunków technicznych dozoru technicznego w zakresie eksploatacji, napraw i modernizacji urządzeń transportu bliskiego (Dz.U. 2018 poz. 2176)
  • 8. Liski, E., Jounela, P., Korpunen, H., Sosa, A., Lindroos, O., & Jylhä, P. (2020). Modeling the productivity of mechanized CTL harvesting with statistical machine learning methods. International Journal of Forest Engineering, 31(3), 253-262. https://doi.org/10.1080/14942119.2020.1820750
  • 9. Maktoubian, J., Taskhiri, M. S., & Turner, P. (2021). Intelligent predictive maintenance (Ipdm) in forestry: A review of challenges and opportunities. Forests, 12(11), https://doi.org/10.3390/f12111495.
  • 10. Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry–a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, https://doi.org/10.1016/j.atech.2022.100042.
  • 11. Meyn, S. P., & Tweedie, R. L. (2012). Markov chains and stochastic stability. Springer Science & Business Media.
  • 12. Davis, M. H. (2018). Markov models and optimization. Routledge. https://doi.org/10.1201/9780203748039
  • 13. Howard, R. A. (2012). Dynamic probabilistic systems: Markov models. Courier Corporation.
  • 14. Eriksson M. 2014. Productivity of harvesters and forwarders in CTL operations in northern Sweden based on large follow-up datasets. International Journal of Forest Engineering 25 (3). https://doi.org/10.1080/14942119.2014.974309
  • 15. Dvořák J., Walczyk J., Natov P., Hošková P. (2015). Struktura czasu pracy harwesterów podczas pozyskania przygodnego. Structure of the operating time of the harvesters during casual logging. Sylwan 159 (4): 300−306.
  • 16. Ziółkowski, J., Oszczypała, M., Lęgas, A., Konwerski, J., Małachowski, J. (2024). A method for calculating the technical readiness of aviation refuelling vehicles. Eksploatacja i Niezawodność – Maintenance and Reliability. https://doi.org/10.17531/ein/187888
  • 17. Kubica, J., Ahmed, B., Muhammad, A., Aslam, M. U. (2024). Dynamic reliability calculation of random structures by conditional probability method. Eksploatacja i Niezawodność – Maintenance and Reliability, 26(2). https://doi.org/10.17531/ein/181133
  • 18. Kozłowski, E., Borucka, A., Oleszczuk, P., Jałowiec, T. (2023). Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodność – Maintenance and Reliability, 25(4). https://doi.org/10.17531/ein/172857
  • 19. Oszczypała, M., Ziółkowski, J., Małachowski, J. (2023). Semi-Markov approach for reliability modelling of light utility vehicles. Eksploatacja i Niezawodność – Maintenance and Reliability, 25(2), 1 25(2). https://doi.org/10.17531/ein/161859
  • 20. Zhang, Q., Yang, L., Duan, J., Qin, J., Zhou, Y. (2024). Research on integrated scheduling of equipment predictive maintenance and production decision based on physical modeling approach. Eksploatacja i Niezawodność – Maintenance and Reliability, 26(1). https://doi.org/10.17531/ein/175409
  • 21. Borucka A. Method of testing the readiness of means of transport with the use of semi-Markov processes, Transport 36 (1), 2021, https://doi.org/10.3846/transport.2021.14370
  • 22. Borucka A, Kozłowski E, Parczewski R, Antosz K, Gil L, Pieniak D. Supply Sequence Modelling Using Hidden Markov Models. Applied Sciences. 2023; 13(1):231. https://doi.org/10.3390/app13010231
  • 23. Wang Z, Shangguan W, Peng C, Cai B. Similarity Based Remaining Useful Life Prediction for Lithium-ion Battery under Small Sample Situation Based on Data Augmentation. Eksploatacja i Niezawodność – Maintenance and Reliability. 2024;26(1). https://doi.org/10.17531/ein/175585
  • 24. Murthy, D. P., Xie, M., & Jiang, R. (2004). Weibull models. John Wiley & Sons.
  • 25. Ahmed Zohair D, Hafaifa A, Abdelhamid I, Abdellah K. Gas turbine reliability estimation to reduce the risk of failure occurrence with a comparative study between the two-parameter Weibull distribution and a new modified Weibull distribution. Diagnostyka. 2022;23(1):2022107. https://doi.org/10.29354/diag/146240
  • 26. Thom, H. C. (1958). A note on the gamma distribution. Monthly weather review, 86(4), 117-122. https://doi.org/10.1175/1520-0493(1958)086%3C0117:ANOTGD%3E2.0.CO;2
  • 27. Shorack, G. R., & Wellner, J. A. (2009). Empirical processes with applications to statistics. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719017
  • 28. Rausand, M., & Hoyland, A. (2003). System reliability theory: models, statistical methods, and applications (Vol. 396). John Wiley & Sons.
  • 29. Almalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124, 32-55. https://doi.org/10.1016/j.ress.2013.11.010
  • 30. Kobayashi H, Mark BL, Turin W. Probability, random processes, and statistical analysis, Cambridge University Press 2011, https://doi.org/10.1017/CBO9780511977770
  • 31. Phani, K. K. (1987). A new modified Weibull distribution function. Journal of the American Ceramic Society, 70(8), C-182. https://doi.org/10.1111/j.1151-2916.1987.tb05719.x
  • 32. Mudholkar, G. S., & Kollia, G. D. (1994). Generalized Weibull family: a structural analysis. Communications in statistics-theory and methods, 23(4), 1149-1171. https://doi.org/10.1080/03610929408831309
  • 33. Stacy, E. W., & Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution. Technometrics, 7(3), 349-358. https://doi.org/10.1080/00401706.1965.10490268
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fa51a1f-f669-42b0-a1c5-5cb0918a9a8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.