PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Economics of combined CO2-EOR and CCS projects based on the example of a Polish multilayered oil field

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a comprehensive economic analysis of a CO2 injection project in one of the Po-lish oil fields for both increased production (CO2-EOR) and underground storage (CCS). An interesting differentiator of this work is the use of a multilayered reservoir, which is actually not one reservoir but several located in the same place, as an example. It allows the optimization of the processes of injection, production and storage. Such projects are becoming more and more important because recently, after a period of long-term stagnation, costs of carbon allowances have started to rise which affects e.g. the electricity market in Poland. This can be an important incentive for the development of CCS technology, especially in combination with CO2-EOR. In the case of very high costs of carbon emissions rights CCS may turn out to be a cheaper solution. Economic efficiency is the main determinant of the EOR project’s success, as well as a very significant factor influencing the potential development of CO2 underground storage. Results are based on the numerical simulation of a combined CO2-EOR and CCS project. This analysis has been divided into two parts. The first uses a standard, deterministic approach, based on the DCF method and NPV indicator. It also provides a detailed sensitivity analysis, with particular reference to the impact of oil prices and the cost of carbon emissions rights on a project’s profitability. The second part of the economic analysis is probabilistic and involves estimating the maximum amount of CAPEX using the Monte Carlo method. Two cases were taken into account. The first assumes that the CO2 emitter pays for CO2 storage and the price is equal to 80% of the emissions rights price (with storage revenue). In the second one the emitter does not pay for storage (without storage revenue).
Słowa kluczowe
Rocznik
Strony
241--254
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] S.Q. Tunio, A.H. Tunio, N.A. Ghirano, Z.M. El Adawy, Int. J. Appl. Sci. Technol. 1 (5), 143-153 (2011).
  • [2] A. Satter, G. Iqubal, J. Buchwalter, Practical Enhanced Reservoir Engineering: Assisted With Simulation Software. Pennwell Books, Tulsa (2008).
  • [3] S. Rychlicki, P. Kosowski, J. Stopa, P. Wojnarowski, Możliwości zwiększenia efektywności wydobycia ropy naftowej ze złóż karpackich. Wydawnictwa AGH, Kraków (2010).
  • [4] K. Dong-Hun, K. Jin-Kuk, Int. J. Greenhouse Gas Control 58, 169-184 (2017).
  • [5] K. Allinson, D. Burt, L. Campbell, L. Constable, M. Crombie, A. Lee, L. Solsbey, Energy Procedia 114, 6950-6956 (2017).
  • [6] X. Wang, K. van’t Veld, P. Marcy, S. Huzurbazar, V. Alvarado, Appl. Energy 222, 132-147 (2018).
  • [7] K. Shogenov, A. Shogenova, D. Gei, E. Forlin, Energy Procedia 114, 7047-7054 (2017).
  • [8] D. Janiga, R. Czarnota, J. Stopa, P. Wojnarowski, Fuel 224, 289-301 (2018).
  • [9] R. Czarnota, D. Janiga, J. Stopa, P. Wojnarowski, Int. J. Heat Mass Transfer 127, 430-437 (2018).
  • [10] R. Czarnota, D. Janiga, J. Stopa, P. Wojnarowski, J. CO2 Util. 17, 32-36 (2017).
  • [11] W. Ampomah, R.S. Balch, R.B. Grigg, B. McPherson, R.A. Will, S.Y. Lee, Greenhouse Gases: Sci. Technol. 7, 128-42 (2017).
  • [12] F. Kamali, F. Hussain, J. Pet. Sci. Eng. 156, 396-407 (2017).
  • [13] W. Ampomah, R.S. Balch, M. Cather, R. Will, D. Gunda, Z. Dai, M.R. Soltnian, Appl. Energy 195, 80-92 (2017).
  • [14] A. Jamali, A. Ettehadtavakkol, Int. J. Greenhouse Gas Control 56, 102-115 (2017).
  • [15] D.H. Kwak, J.K. Kim, Int. J. Greenhouse Gas Control 58, 169-184 (2017.
  • [16] S. Le Van, B.H. Chon, J. Pet. Sci. Eng. 157, 207-222 (2017).
  • [17] K. Welkenhuysen, J. Rupert, T. Compernolle, A. Ramirez, R. Swennen, K. Piessens, Appl. Energy 185, 745-761 (2017).
  • [18] A. Cretí, M. Joets, Energ. Policy 107, 119-130 (2017).
  • [19] P. del Río, Renewable Sustainable Energy Rev. 74, 824-834 (2017).
  • [20] W.D. Montgomery, Journal of Economic Theory 5, 395-418 (1972).
  • [21] https://markets.businessinsider.com/commodities/historical-prices/co2-european-emission-allowances, accessed: 19.11.2019.
  • [22] J. Stopa, L. Zawisza, P. Wojnarowski, S. Rychlicki, Miner. Resour. Manage. 25, 169-186 (2009).
  • [23] P. Wojnarowski, Miner. Resour. Manage. 28, 47-58 (2012).
  • [24] A. Mathisen, R. Skagestad, Energy Procedia 114, 6721-6729 (2017).
  • [25] J. Stopa, P. Wojnarowski, P. Kosowski, D. Janiga, CO2-EOR in multilayered mature oil field, SGEM 2016, (2016).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f9d50ff-0282-496d-bb6f-b6e7d10b5d52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.