PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrode Selection and Catalyst Evaluation in Hydrogen Production from Alkaline Water Electrolysis: A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Generating hydrogen, through alkaline water electrolysis shows promise as an energy source. This review delves into the significance of choosing the electrodes and evaluating catalysts to enhance the efficiency and performance of hydrogen production. It summarizes the activation energy and losses linked to reactions in alkaline electrolysis emphasizing the necessity for electrode materials and catalysts. The review also touches upon challenges such as electricity consumption and platinum group metal based electro catalysts proposing various electrode materials and catalysts with superior activity and selectivity for hydrogen production. Additionally, it discusses electrolysis cell designs that facilitate separating by-products from hydrogen gas. The study reveals that with low over potentials of 70, 318, and 361 mV at 10, 500, and 1000 mA cm−2, respectively, NiOx/NF exhibits strong alkaline hydrogen evolution activity, resulting in great performance in alkaline HER. Moreover, it outlines advancements in alkaline water electrolysis technology focusing on enhanced efficiency and reduced operating costs associated with electricity consumption. Overall this review underscores the role of selecting electrodes and evaluating catalysts in optimizing hydrogen production from alkaline water electrolysis.
Rocznik
Strony
art. no. e81
Opis fizyczny
Bibliogr. 95 poz., rys., tab., wykr.
Twórcy
  • National University of Science and Technology, College of Engineering, Muscat, Oman
  • National University of Science and Technology, College of Engineering, Muscat, Oman
autor
  • National University of Science and Technology, College of Engineering, Muscat, Oman
  • National University of Science and Technology, College of Engineering, Muscat, Oman
Bibliografia
  • 1. Abbas Q., Khurshid H., Yoosuf R., Lawrence J., Issa B.A., Abdelkareem M.A., Olabi A.G., 2023. Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitors. Sci. Rep., 13, 15654. DOI: 10.1038/s41598-023-42647-4.
  • 2. Akbayrak M., Önal A.M., 2021. Metal oxides supported cobalt nanoparticles: active electrocatalysts for oxygen evolution reaction. Electrochim. Acta, 393, 139053. DOI: 10.1016/j.electacta. 2021.139053.
  • 3. Akpanyung K.V., Loto R.T., 2019. Pitting corrosion evaluation: a review. J. Phys.: Conf. Ser., 1378, 022088. DOI: 10.1088/1742-6596/1378/2/022088.
  • 4. Al Bulushi F., Saravanan A.M., Patil G., Walke S., 2022. Studies on bloom energy server. Recent Innovations Chem. Eng., 15, 214–225. DOI: 10.2174/2405520415666220729122436.
  • 5. Anwar S., Faisal K., Zhang Y., Djire A., 2021. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrogen Energy, 46, 32284–32317. DOI: 10.1016/j.ijhydene.2021.06.191.
  • 6. Arthur T.S., Bates D.J., Cirigliano N., Johnson D.C., Malati P., Mosby J.M., Perre E., Rawls M.T., Prieto A.L., Dunn B., 2011. Three-dimensional electrodes and battery architectures. MRS Buletin, 36, 523–531. DOI: 10.1557/mrs.2011.156.
  • 7. Aydın R., Köleli F., 2006. Hydrogen evolution on conducting polymer electrodes in acidic Mmedia. Prog. Org. Coat., 56, 76–80. DOI: 10.1016/j.porgcoat.2006.02.004.
  • 8. Baig M.M., Gul I.H., Baig S.H., Shahzad F., 2021. The comple- mentary advanced characterization and electrochemical techniques for electrode materials for supercapacitors. J. Energy Stor age, 44, 103370. DOI: 10.1016/j.est.2021.103370.
  • 9. Bailera M., Lisbona P., Romeo L.M., Espatolero S., 2017. Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renewable Sustainable Energy Rev., 69, 292–312. DOI: 10.1016/j.rser.2016.11.130.
  • 10. Balach J., Linnemann J., Jaumann T., Giebeler L., 2018. Metal-based nanostructured materials for advanced lithium–sulfur batteries. J. Mat. Chem. A, 6, 23127–23168. DOI: 10.1039/C8TA07220E.
  • 11. Balat H., Kırtay E., 2010. Hydrogen from biomass – present scenario and future prospects. Int. J. Hydrogen Energy, 35, 14, 7416–7426. DOI: 10.1016/j.ijhydene.2010.04.137.
  • 12. Benghanem M., Mellit A., Almohamadi H., Haddad S., Chettibi N., Alanazi A.M.., Dasalla D., Alzahrani A., 2023. Hydrogen production methods based on solar and wind energy: a review. Energies, 16, 757. DOI: 10.3390/en16020757.
  • 13. Bespalko S., Mizeraczyk J., 2022. Overview of the hydrogen production by plasma-driven solution electrolysis. Energies, 15, 7508. DOI: 10.3390/en15207508.
  • 14. Bhandari R., Trudewind C.A., Zapp P., 2014. Life cycle assessment of hydrogen production via electrolysis – a review. J. Cleaner Prod., 85, 151–163. DOI: 10.1016/j.jclepro.2013.07.048.
  • 15. Brisse A.-L., Stevens P., Toussaint G., Crosnier O., Brousse T., 2018. Ni(OH)2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices. Materials, 11, 1178. DOI: 10.3390/ma11071178.
  • 16. Carmo M., Fritz D.L., Mergel J., Stolten D., 2013. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy, 38, 4901–4934. DOI: 10.1016/j.ijhydene.2013.01.151.
  • 17. Chatenet M., Pollet B.G., Dekel D.R., Dionigi F., Deseure J., Millet P., Braatz R.D., Bazant M.Z., Eikerling M., Staffell I.,
  • 18. Balcombe P., Shao-Horn Y., Schäfer H., 2022. Water electrolysis: from textbook knowledge to the latest scientific strategies an industrial developments. Chem. Soc. Rev., 51, 4583–4762. DOI: 10.1039/D0CS01079K
  • 19. Chen M., Wu Y., Han Y., Lin X., Sun J., Zhang W., Cao R., 2015. An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution. ACS Appl. Mater. Interfaces, 7, 21852–21859. DOI: 10.1021/acsami.5b06195.
  • 20. Chen W., Mishra I.K., Qin Z., Yu L., Zhou H., Sun J., Zhang F., Chen S., Wenya G.E., Yu Y., Wang Z.M., Song H.-Z., Ren Z., 2019. Nickel phosphide based hydro- gen producing catalyst with low overpotential and stability at high current density. Electrochim. Acta, 299, 756–761. DOI: 10.1016/j.electacta.2019.01.049.
  • 21. Cui M., Meng X., 2020. Overview of transition metal-based composite materials for supercapacitor electrodes. Nanoscale Adv., 2, 5516–5528. DOI: 10.1039/D0NA00573H.
  • 22. Davies G., 2012. Materials for automobile bodies. Elsevier, 241– 267. DOI: 10.1016/C2010-0-66319-X.
  • 23. Dincer I., Acar C., 2015. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy, 40, 11094–11111. DOI: 10.1016/j.ijhydene.2014.12.035.
  • 24. Ďurovič M., Hnát J., Bouzek K., 2021. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A Comparative Review. J. Power Sources, 493, 229708. DOI: 10.1016/j.jpowsour.2021.229708.
  • 25. Eichman J., Harrison K., Peters M., 2014. Novel electrolyzer applications: Providing more than just hydrogen. Technical report. United States. DOI: 10.2172/1159377.
  • 26. El-Shafie M., Kambara S., Hayakawa Y., 2019. Hydrogen production technologies overview. J. Power Energy Eng., 7, 107–154. DOI: 10.4236/jpee.2019.71007.
  • 27. Esfandiari N., Aliofkhazraei M., Colli A.N., Walsh F.C., Cherevko S., Kibler L.A., Elnagar M.M., Lund P.D., Zhang D., Omanovic S., Lee J., 2024. Metal-based cathodes for hydrogen production by alkaline water electrolysis: review of materials, degradation mechanism, and durability tests. Prog. Mater. Sci., 144, 101254. DOI: 10.1016/j.pmatsci.2024.101254.
  • 28. Farhan A., Khalid A., Maqsood N., Iftekhar S., Sharif H.M.A., Qi F., Sillanpää M., Asif M.B., 2024. Progress in layered double hydroxides (LDHs): synthesis and application in adsorption, catalysis and photoreduction. Sci. Total Environ., 912, 169160. DOI: 10.1016/j.scitotenv.2023.169160.
  • 29. Frankel G.S., 1998. Pitting corrosion of metals: a review of the critical factors. J. Electrochem. Soc., 145, 2186. DOI: 10.1149/1.1838615.
  • 30. Gledhill S.E., Scott B., Gregg B.A., 2005. Organic and nano- structured composite photovoltaics: an overview. J. Mater. Res., 20, 3167–3179. DOI: 10.1557/jmr.2005.0407.
  • 31. Glenk G., Reichelstein S., 2019. Economics of converting renewable power to hydrogen. Nat. Energy, 4, 216–222. DOI: 10.1038/s41560-019-0326-1.
  • 32. Götz M., Lefebvre J., Mörs F., Koch A.M., Graf F., Bajohr S., Reimert R., Kolb T., 2016. Renewable power-to-gas: a techno- logical and economic review. Renewable Energy, 85, 1371–1390. DOI: 10.1016/j.renene.2015.07.066.
  • 33. Gouws S., 2012. Voltammetric characterization methods for the PEM evaluation of catalysts. In: Janis K., Vladimir L. (Eds), Electrolysis. InTech. DOI: 10.5772/48499.
  • 34. Greeley J., Jaramillo T.F., Bonde J., Chorkendorff I., Nørskov J.K. 2006. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater., 5, 909–913. DOI: 10.1038/nmat1752.
  • 35. Gultom N.S., Abdullah H., Hsu C.-N., Kuo D.-H., 2021. Ac tivating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrode positing nickel hydroxide. Chem. Eng. J., 419, 129608. DOI: 10.1016/j.cej.2021.129608.
  • 36. Han L., Dong S., Wang E., 2016. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater., 28, 9266–9291. DOI: 10.1002/adma.201602270.
  • 37. Heard D.M., Lennox A.J.J., 2020. Electrode materials in modern organic electrochemistry. Angew. Chem. Int. Ed., 59, 18866– 18884. DOI: 10.1002/anie.202005745.
  • 38. Hoang A.L., Balakrishnan S., Hodges A., Tsekouras G., Al-Musawi A., Wagner K., Lee C.-Y., Swiegers G.F., Wallace G.G., 2023. High-performing catalysts for energy-efficient commercial alkaline water electrolysis. Sustainable Energy Fuels, 7, 31–60. DOI: 10.1039/D2SE01197B.
  • 39. Holder C.F, Schaak R.E., 2019. Tutorial on powder X-Ray diffraction for characterizing nanoscale materials. ACS Nano, 13, 7359 7365. DOI: 10.1021/acsnano.9b05157.
  • 40. Huang G., Pan X., Yang Y., Zhou B., Wei B., Wang Y., Liu G., Xu C., Du X., Ye F., Yang W., 2024. Heterogenous Fe2P-NiFe layered double hydroxide nanostructures for boosting oxygen evolution reaction. J. Alloys Compd., 1002, 175275. DOI: 10.1016/j.jallcom.2024.175275.
  • 41. Jiang J., Li Y., Liu J., Huang X., Yuan C., Lou X.W., 2012. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater., 24, 5166–5180. DOI: 10.1002/adma.201202146.
  • 42. Ju H., Li Z., Xu Y., 2015. Electro-catalytic activity of Ni-Co- based catalysts for oxygen evolution reaction. Mater. Res. Bull., 64, 171–174. DOI: 10.1016/j.materresbull.2014.12.063.
  • 43. Kameya Y., Hayashi T., Motosuke M., 2016. Stability of platinum nanoparticles supported on surface-treated carbon black. Appl. Cat. B: Environ., 189, 219–225. DOI: 10.1016/j.apcatb.2016.02.049.
  • 44. Keles G., Ataman E.S., Taskin S.B., Polatoglu İ., Kurbanoglu S., 2024. Nanostructured metal oxide-based electrochemical biosensors in medical diagnosis. Biosens., 14, 238. DOI: 10.3390/bios14050238.
  • 45. Kim J.-H., Kim K.J., Park M.-S., Lee N.J., Hwang U., Kim H., Kim Y.-J., 2011. Development of metal-based electrodes for non-aqueous redox flow batteries. Electrochem. Commun., 13, 997–1000. DOI: 10.1016/j.elecom.2011.06.022.
  • 46. Kitchin J.R., 2018. Machine learning in catalysis. Nat. Catal., 1, 230–232. DOI: 10.1038/s41929-018-0056-y.
  • 47. Kurzweil P., Garche J., 2017. 2 – Overview of batteries for future automobiles. In: Garche J., Karden E., Moseley P.T.,
  • 48. Rand D.A.J. (Eds.), Lead-acid batteries for future automobiles Elsevier, 27–96. DOI: 10.1016/B978-0-444-63700-0.00002-7.
  • 49. Lakkimsetty N.R., Sayyida J., Saud R., Said A.L., Walke S., Patil G., Feroz S., 2020. Removal of zinc and copper from aqueous solution by using modified sugarcane bagasse as a low-cost adsorbent. Int. J. Mech. Prod. Eng. Res. Dev., 10, 3, 7785–7798.
  • 50. Li J., Zheng H., Xu C., Su Z., Li X., Sun J., 2021. Bimetallic phosphides as high-efficient electrocatalysts for hydrogen generation. Inorg. Chem., 60, 1624–1630. DOI: 10.1021/acs.inorgchem.0c03110.
  • 51. Liu B., Liu X., Fan X., Ding J., Hu W., Zhong C., 2020. 120 years of nickel-based cathodes for alkaline batteries. J. Alloys Compd., 834, 155185. DOI: 10.1016/j.jallcom.2020.155185.
  • 52. Liu M., Li J., 2016. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces, 8, 2158–2165. DOI: 10.1021/acsami.5b10727.
  • 53. Mahmood N., Yao Y., Zhang J.-W., Pan L., Zhang X., Zou J.-J., 2018. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci., 5, 1700464. DOI: 10.1002/advs.201700464.
  • 54. Marčeta Kaninski M.P., Stojić D.L., Šaponjić D.P., Potkon- jak N.I., Miljanić Š.S., 2006. Comparison of different elec- trode materials—energy requirements in the electrolytic hy- drogen evolution process. J. Power Sources, 157, 758–764. DOI: 10.1016/j.jpowsour.2005.10.105.
  • 55. Marini S., Salvi P., Nelli P., Pesenti R., Villa M., Berrettoni M., Zangari G., Kiros Y., 2012. Advanced alkaline water electrolysis. Electrochim. Acta, 82, 384–391. DOI: 10.1016/j.electacta.2012.05.011.
  • 56. Mbayachi V.B., Ndayiragije E., Sammani T., Taj S., Mbuta E.R., Khan A.U., 2021. Graphene synthesis, characterization, and its applications: a review. Results Chem., 3, 100163. DOI: 10.1016/j.rechem.2021.100163. McCrory C.C.L, Jung S., Peters J.C., Jaramillo T.F., 2013. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc., 135, 16977–16987. DOI: 10.1021/ja407115p.
  • 57. Mehta V., Cooper J.S., 2003. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources, 114, 32–53. DOI: 10.1016/S0378-7753(02)00542-6.
  • 58. Nasrollahzadeh M., Atarod M., Sajjadi M., Sajadi S.M., Issaabadi Z., 2019. Chapter 6 – Plant-mediated green synthesis of nanostructures: mechanisms, characterization, and applications. Interface Sci. Technol., 28, 199–322. DOI: 10.1016/B978-0-12- 813586-0.00006-7.
  • 59. Pérez-Alonso F.J., Adán C., Rojas S., Peña M.A., Fierro J.L.G., 2014. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alka- line medium. Int. J. Hydrogen Energy, 39, 5204–5212. DOI: 10.1016/j.ijhydene.2013.12.186.
  • 60. Qadeer M.A., Zhang X., Farid M.A., Tanveer M., Yan Y., Du S., Huang Z.-F., Tahir M., Zhou J.-J., 2024. A review on fundamentals for designing hydrogen evolution electrocatalyst. J. Powe Sources, 613, 234856. DOI: 10.1016/j.jpowsour.2024.234856.
  • 61. Reith L., Triana C.A., Pazoki F., Amiri M., Nyman M., Patzke G.R., 2021. Unraveling nanoscale cobalt oxide catalysts for the oxygen evolution reaction: maximum performance, minimum effort. J. Am. Chem. Soc., 143, 15022–15038. DOI: 10.1021/jacs.1c03375.
  • 62. Rekha P., Yadav S., Singh L., 2021. A review on cobalt phosphatebased materials as emerging catalysts for water splitting. Ceram: Int:; 47, 16385–16401. DOI: 10.1016/j.ceramint.2021.02.215.
  • 63. Rezaei B., Irannejad N., 2022. 3 – Metal-based electrodes, Editor(s): Giuseppe Maruccio, Jagriti Narang. In: Maruccio G.,
  • 64. Narang J. (Eds.), Electrochemical sensor. Woodhead Publishing Series in Electronic And Optical Materials, Woodhead Publishing, 51–78. DOI: 10.1016/B978-0-12-823148-7.00003-9.
  • 65. Riaz S., Anjum M.S., Ali A., Mehmood Y., Ahmad M., Alwadai N., Iqbal M., Akyürekli S., Hassan N., Shoukat R., 2024. Carbon nanotube composites with bimetallic transition metal selenides as efficient electrocatalysts for oxygen evolution reaction. Sustainability, 16, 1953. DOI: 10.3390/su16051953.
  • 66. Saba S.M., Müller M., Robinius M., Stolten D., 2018. The investment costs of electrolysis – a comparison of cost studies from the past 30 years. Int. J. Hydrogen Energy, 43, 1209–1223. DOI: 10.1016/j.ijhydene.2017.11.115.
  • 67. Sapountzi F.M., Gracia J.M., Weststrate C.J., Fredriksson H.O.A., Niemantsverdriet J.W., 2017. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci., 58, 1–35. DOI: 10.1016/j.pecs.2016.09.001.
  • 68. Sarkar S., Peter S.C., 2018. An overview on Pd-based electrocat-alysts for the hydrogen evolution reaction. Inorg. Chem. Front., 5, 2060–2080. DOI: 10.1039/C8QI00042E.
  • 69. Sathre R., Scown C.D., Morrow W.R., Stevens J.C., Sharp I.D., Ager J.W., Walczak K., Houle F.A., Greenblatt J.B., 2014. Lifecycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci., 7, 3264–3278. DOI: 10.1039/C4EE01019A.
  • 70. Schalenbach M., Kasian O., Mayrhofer K.J.J., 2018. An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation. Int. J. Hydrogen Energy, 43, 11932– 11938. DOI: 10.1016/j.ijhydene.2018.04.219.
  • 71. Schmidt O., Gambhir A., Staffell I., Hawkes A., Nelson J., Few S., 2017. Future Cost and Performance of water electrolysis: an expert elicitation study. Int. J. Hydrogen Energy, 42, 30470– 30492. DOI: 10.1016/j.ijhydene.2017.10.045.
  • 72. Seitz L.C., Dickens C.F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H.Y., Norskov J.K., Jamarillo T.F., 2016. A highly active and stable IrOx /SrIrO3 catalyst for the oxygen evolution reaction. Sci., 353, 6303, 1011–1014. DOI: 10.1126/science.aaf5050.
  • 73. Selembo P.A., Merrill M.D., Logan B.E., 2010. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy, 35, 428–437. DOI: 10.1016/j.ijhydene.2009.11.014.
  • 74. Sharafinia S., Rashidi A., 2022. Conducting polymers for water splitting applications. In: Gupta R. (Ed.), Handbook of energy materials. Springer, Singapore, 1–30. DOI: 10.1007/978-981- 16-4480-1_79-1.
  • 75. Shawuti S., Can M.M., Gülgün M.A., Fırat T., 2014. Grain size dependent comparison of ZnO and ZnGa2O4 semiconductors by impedance spectrometry. Electrochim. Acta, 145, 132–138. DOI: 10.1016/j.electacta.2014.08.084.
  • 76. Song F., Hu X., 2014. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun., 5, 4477. DOI: 10.1038/ncomms5477.
  • 77. Suen N.-T., Hung S.-F., Quan Q., Zhang N., Xu Y.-J., Chen H.M., 2017. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev., 46, 337–365. DOI: 10.1039/C6CS00328A.
  • 78. Walke S., Mandake M.B., Thakar C.M., Naniwadekar M., Tapre R.W., 2024. Optimized deep learning multi-model investigation of images for ground water level detection. J. Aut. Int., 7, 1–8. DOI: 10.32629/jai.v7i4.1229.
  • 79. Walke S., Mandake M.B., Thakar C.M., Naniwadekar M., Tapre R.W., Ghosh T., Qureshi Y., 2023. A review on copper chemical vapour deposition. Mater. Today Proc. DOI: 10.1016/j.matpr.2022.12.140.
  • 80. Walke S., Mandke M.B., Thool S., 2017. Gas separation by polymer membrane. Int. J. Adv. Eng. Math. Fluid Mech., 1, 23–30.
  • 81. Walke S.M., Sathe V.S., 2012. Study on the gas holdup of trian- gular pitch and square pitch sparger geometry in bubble column. Int. J. Fluid Mech. Res., 39, 85–97. DOI: 10.1615/InterJFluid- MechRes.v39.i1.60.
  • 82. Wang G., Zhang L., Zhang J., 2012. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41, 797–828. DOI: 10.1039/C1CS15060J.
  • 83. Wang S., Geng Z., Bi S.,Wang Y., Gao Z., Jin L., Zhang C., 2024. Recent advances and future prospects on Ni3S2-based electrocatalysts for efficient alkaline water electrolysis. Green Energy Environ., 9, 659–683. DOI: 10.1016/j.gee.2023.02.011.
  • 84. Wang S., Lu A., Zhong C.-J., 2021. Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 8, 4. DOI: 10.1186/s40580-021-00254-x.
  • 85. Xu L., Li W., Luo J., Chen L., He K., Ma D., Lv S., Xing D., 2023. Carbon-based materials as highly efficient catalysts for the hydrogen evolution reaction in microbial electrolysis cells: mechanisms, methods, and perspectives. Chem. Eng. J., 471, 144670. DOI: 10.1016/j.cej.2023.144670.
  • 86. Xu Q., Zhang L., Zhang J., Wang J., Hu Y., Jiang H., Li C., 2022. Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. Energy Chem., 4, 100087. DOI: 10.1016/j.enchem.2022.100087.
  • 87. Yan Y., Wang T., Li X., Pang Huan., Xue H., 2017. Noble metal- based materials in high-performance supercapacitors. Inorg. Chem. Front., 4. 33–51. DOI: 10.1039/C6QI00199H.
  • 88. Yang G., Mo J., Kang Z., Dohrmann Y., List F.A., Green Jr. J.B., Babu S.S., Zhang F.-Y., 2018. Fully printed and inte- grated electrolyzer cells with additive manufacturing for high- efficiency water splitting. Appl. Energy, 215, 202–210. DOI: 10.1016/j.apenergy.2018.02.001.
  • 89. Zeng K., Zhang D., 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci., 36, 307–326. DOI: 10.1016/j.pecs.2009.11.002.
  • 90. Zhang Y., Li P., Yang X., Fa W., Ge S., 2018. High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting. J. Alloys Compd., 732, 248–256. DOI: 10.1016/j.jallcom.2017.10.194.
  • 91. Zhang Z., Li P., Zhang X., Hu C., Li Y., Yu B., Zeng N., Lv C., Song J., Li M., 2021. Recent advances in layered-double- hydroxides based noble metal nanoparticles efficient electrocat- alysts. Nanometar., 11, 2644. DOI: 10.3390/nano11102644.
  • 92. Zhang Z., Liu J., Gu J., Su L., Cheng L., 2014. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci., 7, 2535–2558. DOI: 10.1039/C3EE43886D.
  • 93. Zhao L., Li Y.,Yu M., Peng Y., Ran F., 2023. Electrolyte- wettability issues and challenges of electrode materials in elec- trochemical energy storage, energy conversion, and beyond. Adv. Sci., 10, 2300283 . DOI: 10.1002/advs.202300283.
  • 94. Zhao S., Han G., Wang C., Ban H., Xie G., Liu X., Jiang L., 2024. Ni–Fe–P/Fe–Si electrocatalysts on iron sheets: regulating surface structure to amorphous heterojunction for excellent oxygen evolution reaction. Int. J. Hydrogen Energy, 49, 580– 590. DOI: 10.1016/j.ijhydene.2023.08.219.
  • 95. Zhou D., Li P., Xu W., Jawaid S., Mohammed-Ibrahim J., Liu W., Kuang Y., Sun X., 2020. Recent advances in non-precious metal-based electrodes for alkaline water electrolysis. Chem Nano Mat., 6, 336–355. DOI: 10.1002/cnma.202000010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f9bab8b-83d9-45b1-9e31-4731e5372237
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.