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Abstract. In this paper we develop the monotone method for nonlinear multi-order N -systems
of Riemann-Liouville fractional differential equations. That is, a hybrid system of nonlinear
equations of orders qi where 0 < qi < 1. In the development of this method we recall any
needed existence results along with any necessary changes. Through the method’s development
we construct a generalized multi-order Mittag-Leffler function that fulfills exponential-like
properties for multi-order systems. Further we prove a comparison result paramount for the
discussion of fractional multi-order inequalities that utilizes lower and upper solutions of the
system. The monotone method is then developed via the construction of sequences of linear
systems based on the upper and lower solutions, and are used to approximate the solution of
the original nonlinear multi-order system.
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monotone method.
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1. INTRODUCTION

Fractional differential equations have various applications in widespread fields of
science, such as in engineering [5], chemistry [7, 14, 16], physics [1, 2, 9], and others
[10,11]. Despite there being a number of existence theorems for nonlinear fractional
differential equations, much as in the integer order case, this does not necessarily
imply that calculating a solution explicitly will be routine, or even possible. Therefore,
it may be necessary to employ an iterative technique to numerically approximate a
needed solution. In this paper we construct such a method. For some existence results
on fractional differential equations we refer the reader to the papers [6, 8, 15] and the
books [10,17] along with references therein.
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Specifically, we construct a technique to approximate solutions to the nonlinear
Riemann-Liouville (R-L) fractional differential multi-order N -system. A multi-order
system is of the type where the equation in each component is of unique order. That
is, a fractional system of the type

Dqixi = fi(t, x).

This is a generalization of normal R-L systems and yields a type of hybrid system of a
fractional type. We note that various complications arise from systems of this type as
many known properties used in the study of scalar fractional differential equations and
single-order fractional systems require modification, but at the same time multi-order
systems present far more possibilities for applications. For example, consider allowing
each species in a population model to have their own order of derivative. Though we
will not consider any specific applications in this study, we hope this will add to the
groundwork of future studies.

The iterative technique we construct will be a generalization of the monotone
method for multi-order R-L N -systems of order qi, where 0 < qi < 1. The monotone
method, in broad terms, is a technique in which sequences are constructed from the
unique solutions of linear differential equations, and initially based off of lower and
upper solutions of the original nonlinear equation. These sequences converge uniformly
and monotonically, from above and below, to maximal and minimal solutions of the
nonlinear equation. If the nonlinear DE considered has a unique solution then both
sequences will converge uniformly to that unique solution. The advantage of the
monotone method is that it allows us to approximate solutions to nonlinear DEs using
linear DEs; further using upper and lower solutions guarantee the interval of existence.
For more information on the monotone method for ordinary DEs see [12].

Many complications arise when developing the monotone method for multi-order
systems. First of all, as seen in the previous work involving the R-L case in these
methods, the sequences we construct, say {vn}, {wn} do not converge uniformly to
extremal solutions, but weighted sequences {t1−qvn}, {t1−qwn} converge uniformly.
Another complication, unique to multi-order systems, involves the well-known result
for the fractional derivative of the weighted Mittag-Leffer function, a function which
we define below in Section 2. That is, the Mittag-Leffler function has a property similar
to that of the natural exponential

Dq
t t
q−1Eq,q(tq) = tq−1Eq,q(tq).

However, this property is dependent on the order of q used, and therefore the weighted
Mittag-Leffler function of order q1 will not have this property with the derivative of
order q2. This issue is present in the proof of Theorem 2.13, and renders it unable
to be proven in the same manner as in the single-order case. In order to circumvent
this issue we construct a family of generalized Mittag-Leffler functions that operate
in much the same way but in a complementary manner to multi-order systems. That
is, the qi-th derivative of this generalized Mittag-Leffler function will yield a linear
combination including itself. The construction of this function and properties regarding
it are discussed in Definition 2.10, Lemma 2.11 and the neighbouring text.
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For the monotone method we generalize our basic system in a way so that we
can cover many different cases in a single result. To do this, for each i we rearrange
the nonlinear function f to look like fi(t, xi, [x]r, [x]s) where f is nondecreasing in
component r and nonincreasing in component s. We note that the monotone method
has been established for the standard nonlinear Riemann-Liouville fractional differential
N -systems of order q in [4], and was established for multi-order 2-systems in [3], this
study acts as a further generalization of that work.

2. PRELIMINARY RESULTS

In this section, we will first consider basic results regarding scalar Riemann-Liouville
differential equations of order q, 0 < q < 1. We will recall basic definitions and results
in this case for simplicity, and we note that many of these results carry over naturally
to the multi-order case. Then we will consider existence and comparison results for
multi-order systems of order 0 < qi < 1, with i ∈ {1, 2, 3, . . . , N} = D, which will be
used in our main result. In the next section, we will apply these preliminary results to
develop the monotone method for these multi-order R-L systems. Note, for simplicity
we only consider results on the interval J = (0, T ], where T > 0. Further, we will let
J0 = [0, T ], that is J0 = J̄ .
Definition 2.1. Let p = 1− q, a function φ(t) ∈ C(J,R) is a Cp function if tpφ(t) ∈
C(J0, R). The set of Cp functions is denoted Cp(J,R). Further, given a function
φ(t) ∈ Cp(J,R) we call the function tpφ(t) the continuous extension of φ(t).

Now we define the R-L integral and derivative of order q on the interval J .
Definition 2.2. Let φ ∈ Cp(J,R), then Dq

tφ(t) is the q-th R-L derivative of φ with
respect to t ∈ J defined as

Dq
tφ(t) = 1

Γ(1− q)
d

dt

t∫
0

(t− s)−qφ(s)ds,

and Iqt φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iqt φ(t) = 1
Γ(q)

t∫
0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different or ambiguous, we will
write out the definition explicitly. The next definition is related to the solution of
linear R-L fractional differential equations and is also of great importance in the study
of the R-L derivative.
Definition 2.3. The Mittag-Leffler function with parameters α, β ∈ R, denoted Eα,β ,
is defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β) ,

which is entire for α, β > 0.
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For fractional differential equations we utilize the weighted Cp version of the
Mittag-Leffler function tq−1Eq,q(tq), since as mentioned previously in Section 1 it is
its own q-th derivative. Further, it attains a convergence result we mention in the
following remark.

Remark 2.4. The Cp weighted Mittag-Leffler function

tq−1Eq,q(λtq) =
∞∑
k=0

λktkq+q−1

Γ(kq + q) ,

where λ is a constant, converges uniformly on compacta of J .

The next result gives us that the q-th R-L integral of a Cp continuous function
is also a Cp continuous function. This result will give us that the solutions of R-L
differential equations are also Cp continuous.

Lemma 2.5. Let f ∈ Cp(J,R), then Iqt f(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp
continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R+ can be found in [4]. Now we consider
results for the nonhomogeneous linear R-L differential equation,

Dq
tx(t) = λx(t) + z(t), (2.1)

with initial condition
tpx(t)

∣∣
t=0 = x0,

where x0 is a constant, x ∈ C(J0, R), and z ∈ Cp(J,R), which has unique solution

x(t) = x0Γ(q)tq−1Eq,q(λtq) +
t∫

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

Next, we recall a result we will utilize extensively in our proceeding comparison
and existence results, and likewise in the construction of the monotone method. We
note that this result is similar to the well known comparison result found in literature,
as in [13], but we do not require the function to be Hölder continuous of order λ > q.

Lemma 2.6. Let m ∈ Cp(J,R) be such that for some t1 ∈ J we have m(t1) = 0 and
m(t) ≤ 0 for t ∈ (0, t1]. Then

Dq
tm(t)

∣∣
t=t1
≥ 0.

The proof of this lemma can be found in [4], along with further discussion as to
why and how we weaken the Hölder continuous requirement. We use this lemma in the
proof of the later main comparison result, which will be critical in the construction of
the monotone method.

Now, we will turn our attention to results for the nonlinear R-L fractional
multi-order systems, and in doing so we must discuss any changes. First, we will consider
systems of orders qi, 0 ≤ qi < 1. For simplicity we will let q = (q1, q2, q3, . . . , qN ), and
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when we write inequalities x ≤ y, we mean it is true for all components. Further,
from this point on, we will use the subscript i which we will always assume is in
D = {1, 2, . . . , N}. For defining Cp continuity for multi-order systems we define
pi = 1 − qi and for simplicity of notation we will define the function xp such that
xpi(t) = tpixi(t) for t ∈ J0. We also note that at times it will be convenient to
emphasize the product of tp, therefore we will define tpx(t) = xp(t) for t ∈ J0. Now,
we define the set of Cp continuous functions as

Cp(J,RN ) = {x ∈ C(J,RN ) |xp ∈ C(J0, R
N )}.

For the rest of our results we will be considering the nonlinear R-L fractional multi-order
system

Dqixi = fi(t, x), (2.2)
xpi(0) = x0

i ,

where f ∈ C(J0 × RN , RN ), and x0 ∈ RN . Note that just as in the scalar case,
a solution x ∈ Cp(J,RN ) of (2.2) also satisfies the equivalent R-L integral equation

xi(t) = x0
i t
qi−1 + 1

Γ(qi)

t∫
0

(t− s)qi−1fi(s, x(s))ds. (2.3)

Thus, if f ∈ C(J0 ×RN , RN ) then (2.2) is equivalent to (2.3)). See [10, 13] for details.
Now we will recall a Peano type existence theorem for equation (2.2).

Theorem 2.7. Suppose f ∈ C(R0, R
N ) and |fi(t, x)| ≤Mi on R0, where

R0 = {(t, x) : |xp(t)− x0| ≤ η, t ∈ J0}

Then the solution of (2.2) exists on J .

This result is presented for the scalar case in [13], and in [4] it was proven that
the solution can be extended to all of J . We note that for multi-order systems it is
proved in much the same way. Next we will consider the main Comparison Theorem
for multi-order N -systems, which will be utilized extensively in our main results. For
this result we will require f to satisfy the following definition.

Definition 2.8. A function f(t, x) ∈ C(J0 × RN , RN ) is said to be quasimonotone
nondecreasing in x if for each i, x ≤ y and xi = yi implies fi(t, x) ≤ fi(t, y). Naturally,
f is quasimonotone nonincreasing if we reverse the inequalities.

Further the Comparison Theorem utilizes upper and lower solutions which we give
in the following definition.

Definition 2.9. w, v ∈ Cp(J,R) are upper and lower solutions of system (2.2) if

Dqiwi(t) ≥ fi(t, w), wpi(0) = w0
i ≥ x0

i ,

Dqivi(t) ≤ fi(t, v), vpi(0) = v0
i ≥ x0

i .
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For the Comparison Theorem we will introduce the following function

Z =
∞∑
k1=1

∞∑
k2=1

∞∑
k3=1
· · ·

∞∑
kN =1

cu·k−1 tq·k−1

Γ(q · k) ,

where q is defined as above, k = (k1, k2, k3, . . . , kN ), u = (1, 1, 1, . . . , 1), and c ∈ R
is a constant. The development of the Comparison Theorem for multi-order systems
will require the construction of various reduced forms of Z, i.e. we will need to define
a generalized Z function such that, for example, writing Z1,3,5 would give us the
construction of Z but with only the components involving q1, q3 and q5. That is,

Z1,3,5 =
∞∑
k1=1

∞∑
k3=1

∞∑
k5=1

ck1+k3+k5−1 tk1q1+k3q3+k5q5−1

Γ(k1q1 + k3q3 + k5q5) .

We give a general definition of this concept here.

Definition 2.10. For any subset A ⊂ D, define the function ZA as

ZA =
∑

ki≥1,i∈A

c

∑
j∈A

(kj)−1
t

∑
j∈A

(kjqj)−1

Γ
(∑

j∈A kjqj
) .

To shore up our notation further we would like to remove the braces for each A in the
subscript of ZA, therefore we would say that for simplicity that Z1,3,5 = Z{1,3,5}. The set
based notation is also complementary to the symmetry of ZA, since {5, 3, 1} = {1, 3, 5}
and Z5,3,1 = Z1,3,5.

A special case to note here is that for any i

Zi =
∞∑
ki=1

cki−1tkiqi−1

Γ
(
kiqi

) = tqi−1
∞∑
ki=0

ckitkiqi

Γ
(
kiqi + qi

)
= tqi−1Eqi,qi(ctqi).

Therefore these ZA functions generalize the weighted Mittag-Leffler function, and
hence from this point we will utilize this notation for it. Before we go much further we
need to prove that each ZA converges uniformly, and we will be employing the qi-th
derivative of ZA within our later results. We will pursue both of these results in the
following Lemma. In these results we will use that the Beta Function

B(x, y) =
1∫

0

sx−1(1− s)y−1ds = Γ(x)Γ(y)
Γ(x+ y) ,

is decreasing in x and y for x, y > 0.

Lemma 2.11. For each A ⊂ D, ZA converges uniformly on compacta of J . Further,

DqaZA = c(ZA\{a} − ZA), (2.4)

for each a ∈ A.
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Proof. First, we will show that each ZA converges uniformly on compacta of J . To
begin let

A = {a1, a2, a3, · · · , am} ⊂ D.
Now we note that Za1 converges uniformly as discussed in Remark 2.4, further in [3] it
was proved that Z1,2 (Which the authors called Z) converges uniformly on compacta
of J , and we can use the same process to show that Za1,a2 converges uniformly. Using
this as an inductive basis step, now suppose that Za1,a2,a3,...,an

converges uniformly up
to some 2 ≤ n < N . Now we will show that Za1,a2,a3,...,an+1 converges uniformly. From
here we will reduce our notation such that ki = kai and qi = qai for each 1 ≤ i ≤ n+ 1,
and

∑
j =

∑n
j=1. Now we note that there exists a K > 0 such that for kn+1 ≥ K, that

kn+1qn+1 − 1 > 0. Then, for any t ∈ J , kn+1 ≥ K and for each other ki ≥ 1 we have

c
kn+1+

∑
j
(kj)

t
kn+1qn+1+

∑
j
(kjqj)−1

Γ
(
kn+1qn+1 +

∑
j kjqj

)
= B

(
kn+1qn+1,

∑
j(kjqj)

)ckn+1+
∑

j
(kj)−1

t
kn+1qn+1+

∑
j
(kjqj)−1

Γ
(
kn+1qn+1

)
Γ
(∑

j kjqj
)

≤ B
(
qn+1,

∑
j qj
)ckn+1+

∑
j
(kj)−1

T
kn+1qn+1+

∑
j
(kjqj)−1

Γ
(
kn+1qn+1

)
Γ
(∑

j kjqj
) ,

which is obtained by the monotonicity of the Beta function. Now letting B =
B
(
qn+1,

∑
j qj
)
, we note that the series

B
∞∑

kn+1=K,ki=1

c
kn+1+

∑
j
(kj)−1

T
kn+1qn+1+

∑
j
(kjqj)−1

Γ
(
kn+1qn+1

)
Γ
(∑

j kjqj
)

= B
∑
ki≥1

c

∑
j
(kj)−1

T

∑
j
(kjqj)−1

Γ
(∑

j kjqj
) ∞∑

kn+1=K

ckn+1T kn+1qn+1

Γ
(
kn+1qn+1

)
≤ BT qn+1Za1,a2,a3,...,an

(T )Eqn+1,qn+1(cT ).

Therefore, by the Weirstrass M-Test, since both Za1,a2,a3,...,an(T ) and Eqn+1,qn+1(cT )
converge, Za1,a2,a3,...,an+1 is a finite sum of K − 1 weakly singular terms and a series
that is uniformly convergent on J0, thus it is uniformly convergent on compacta of
J . By induction we can conclude that ZA is uniformly convergent on compacta of J .
And finally, since A was an arbitrary subset of D we conclude that this will be true
for any chosen ZA.

Now we will consider the qi-th derivative of each ZA. For simplicity we will look
at the q1-st derivative and note that computing the others works in the same way.
To begin, and to simplify our notation let A ⊂ D \ {1}, with elements labeled as
previously, and let

Z1,A = Z{1}∪A = Z1,a1,a2,...,am
=

∑
k1,ki≥1,i∈A

c
k1+
∑

j∈A
(kj)−1

t
k1q1+

∑
j∈A

(kjqj)−1

Γ
(
k1q1 +

∑
j∈A kjqj

) .
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Now, with this notation, we may write statement (2.4) as

Dq1Z1,A = c(ZA + Z1,A).

To prove this we will utilize the fact that each Z1,A converges uniformly, thus we can
differentiate term by term. Doing so we obtain,

Dq1Z1,A =
∑

k1,ki≥1,i∈A

c
k1+
∑

j∈A
(kj)−1

t
(k1−1)q1+

∑
j∈A

(kjqj)−1

Γ
(
(k1 − 1)q1 +

∑
j∈A kjqj

) .

Now we can split this series into two cases: the case where k1 = 1 and then the series
where k1 ≥ 2. So when k1 = 1 we obtain the series

∑
ki≥1,i∈A

c

∑
j∈A

(kj)
t

∑
j∈A

(kjqj)−1

Γ
(∑

j∈A kjqj
) = cZA.

From here we need only renumber the series for k1 ≥ 2 to show that

Dq1Z1,A = cZA +
∑

k1,ki≥1,i∈A

c
k1+
∑

j∈A
(kj)

t
k1q1+

∑
j∈A

(kjqj)−1

Γ
(
k1q1 +

∑
j∈A kjqj

)
= cZA + cZ1,A.

Using the same argument we can show that DqiZi,A = cZA + cZi,A for each i ∈ D
and each A ⊂ D \ {i}.

Now that we have this convergence result it is routine to show that the continuous
extensions of ZA converge uniformly. Specifically, for each i, tpiZi,A converges uniformly
on J0. In the following theorem we will need to evaluate this continuous extension at
t = 0. Therefore, we present the following remark.

Remark 2.12. For each i,

tpiZi
∣∣
t=0 = Eqi,qi

(0) = 1
Γ(qi)

,

and for each nonempty A ⊂ D \ {i},

tpiZi,A
∣∣
t=0 =

∑
ki,kj≥1,j∈A

c
ki+
∑

`∈A
(k`)−1

t
(ki−1)qi+

∑
`∈A

(kjqj)

Γ
(
kiqi +

∑
`∈A kjqj

) ∣∣∣
t=0

= 0,

since (ki − 1)qi +
∑
`∈A(kjqj) > 0.
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We note that the family of functions ZA retain many properties similar to those of
the weighted Mittag-Leffler function for single-order fractional differential systems and
the natural exponential for ordinary differential equations. Thus, until a more adequate
name is coined, we have taken to calling these functions multi-order generalized
Mittag-Leffler functions or multi-order generalized exponentials. We believe that these
functions will be paramount in the study of multi-order fractional systems and in the
future we plan to turn our attention to various other properties regarding them. For
our current result we will use these multi-order functions to construct the comparison
theorem for multi-order systems.

Theorem 2.13. Let v, w ∈ Cp(J,RN ) be lower and upper solutions of system (2.2).
Let f ∈ C(J0 × RN , RN ) and quasimonotone nondecreasing, and if f satisfies the
following Lipschitz condition

fi(t, x)− fi(t, y) ≤ Li
N∑
k=1

(xk − yk), (2.5)

when x ≥ y, then v(t) ≤ w(t) on J .

Proof. First we will consider the case when one of the inequalities in Definition 2.9 is
strict. So suppose without loss of generality that Dqiw > fi(t, w) and w0

i > x0
i , then

we claim that w > v on J . To prove this, suppose to the contrary that the set

ω =
N⋃
i=1
{t ∈ J : wi(t) ≤ vi(t)}

is nonempty. Now let τ = inf(ω), then since w0 > v0 and by the continuity of w and v
we can conclude that wi(τ) = vi(τ) for some i ∈ D, for simplicity and without loss
of generality suppose that this i = 1. So w1 ≥ v1 on (0, τ), and thus v1 − w1 ≤ 0 on
(0, τ ], which by Lemma 2.6 implies that Dq1v1 − w1

∣∣
t=τ ≥ 0. Further, since τ is the

infimum we can also conclude that wj ≥ vj on (0, τ) for each j > 1. So applying this
and the quasimonotonicity of f we have

f1(τ, v(τ)) ≥ Dq1v1
∣∣
t=τ ≥ D

q1w1
∣∣
t=τ > f1(τ, w(τ))

= f1(τ, v1(τ), w2(τ), w3(τ), . . . , wN (τ))
≥ f1(τ, v(τ)),

which is a contradiction. Therefore w > v on J .
Now we turn our attention to the case when both inequalities are non-strict. To

begin we construct a collection of sets in the following manner, let

ϕmi = {A ⊂ D : i ∈ A, |A| = m}.

That is, ϕmi is the set of all subsets A of D with m components containing the i-th
component. And let

ζmi =
∑
A∈ϕm

i

ZA.
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That is, ζmi is the sum of all unique possible ZA functions where |A| = m and each
one contains the i-th component. Through this process we are able to eliminate
the possibility of redundancies. That is, since Z1,2,3 = Z3,2,1, using conventional
enumerated sum notation would have yielded multiple copies of Z1,2,3 in

N∑
a1=1

N∑
a2=1

Z1,a1,a2 ,

but using this ζ notation ensures that Z1,2,3 will only appear once in ζ3
1 . We will also

consider the sum of all possible unique Z functions made of m components and define
it as a ζ with only a superscript as

ζm =
∑

A⊂N,|A|=m

ZA.

Now, we will be utilizing the functions ZA, with c = NL, and where L = max
1≤i≤N

{Li}.
Letting ε > 0 we construct the function

ŵi = wi + εζ∗i ,

where
ζ∗i = Zi + ζ2

i + ζ3
i + · · ·+ ζN−1

i + ZD,

that is, ζ∗i is the sum of all unique possibilities of functions ZA such that i ∈ A.
For our argument we wish to consider

∑N
i=1 ζ

∗
i , which we will denote as ζ∗. From

here we note that for any {a1, a2}, it is an element of ϕ2
a1
∩ ϕ2

a2
and so Za1,a2 is

contained in both ζ2
a1

and ζ2
a2
. Thus, every 2-component Za1,a2 will appear in ζ∗ twice.

Similarly, for any 3-element {a1, a2, a3} ∈ ϕ3
a1
∩ ϕ3

a2
∩ ϕ3

a3
, Za1,a2,a3 will appear in ζ∗

thrice. And more generally, for any m-component A, A ∈
⋂m
k=1 ζ

m
k , and therefore ZA

will appear m-times in ζ∗. Therefore, we can give an explicit representation of ζ∗ as

ζ∗ = ζ1 + 2ζ2 + 3ζ3 + · · ·+ (N − 1)ζN−1 +NZD.

Now we turn our attention to each qi-th derivative of ζ∗i . For simplicity we will
only consider the q1-st derivative of ζ∗1 since the argument for each component will
be the same. For any A ⊂ D \ {1} with |A| = m we know from Lemma 2.11 that
Dq1Z1,A = NLZA + NLZ1,A, where A and {1} ∪ A are elements of

⋂
a∈A ϕ

m
a and

ϕm+1
1 respectively. Therefore, when we sum up every unique element ZA, with A in

ϕm+1
1 , i.e. ζm+1

1 , and compute the q1-st derivative we will be left with NLζm+1
1 plus

NL times every element found in ζm not including the elements of ζm1 . That is,

Dq1ζm+1
1 = NL(ζm − ζm1 + ζm+1

1 ),

and since A was arbitrary this will be true for any n, 1 ≤ m ≤ N − 1. For m = 0, we
note that ζ1

1 = Z1, and Dq1Z1 = NLZ1. With this in hand we can show that

Dq1ζ∗1 = NLZ1 +NL(ζ1 − Z1 + ζ2
1 ) +NL(ζ2 − ζ2

1 + ζ3
1 ) + · · ·

+NL(ζN−2 − ζN−2
1 + ζN−1

1 ) +NL(ζN−1 − ζN−1
1 + ZD)

= NL(ζ1 + ζ2 + ζ3 + · · ·+ ζN−1 + ZD),
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which will hold for each qi-th derivative.
Now, we wish to show that ŵ satisfies Definition 2.9 with strict inequalities. To

begin, from the nature of w and Remark 2.12 we obtain

ŵpi(0) ≥ x0
i + ε/Γ(qi) > x0

i ,

for each i. From here we consider

Dqiŵi ≥ fi(t, w) + εDq1ζ∗1

≥ fi(t, ŵ)− Li
N∑
j=1

(ŵj − wj) + εDq1ζ∗1

= fi(t, ŵ) + ε(Dq1ζ∗1 − Liζ∗)

≥ fi(t, ŵ) + εL

N−1∑
k=1

(N − k)ζk > fi(t, ŵ).

We conclude the strict inequality in the final step since Remark 2.12 implies that
ζ1 > 0 and each other ζk ≥ 0. So from our previous work with strict inequalities we
have that ŵ > v on J , and letting ε→ 0 we obtain w ≥ v, which finishes the proof.

Now, if we know of the existence of lower and upper solutions v and w such that
v ≤ w, we can prove the existence of a solution in the set

Ω = {(t, y) : v(t) ≤ y ≤ w(t), t ∈ J}.

We consider this result in the following theorem.

Theorem 2.14. Let v, w ∈ Cp(J,RN ) be lower and upper solutions of (2.2) such that
v(t) ≤ w(t) on J and let f ∈ C(Ω, RN ), where Ω is defined as above. Then there exists
a solution x ∈ Cp(J,RN ) of (2.2) such that v(t) ≤ x(t) ≤ w(t) on J .

This theorem is proved in the same way as seen in [4], with only minor additions
to apply it to multi-order N-systems.

3. MONOTONE METHOD

In this section we will develop the monotone iterative technique for nonlinear
multi-order systems of the type (2.2). In order to cover as many cases as possible we
introduce the following generalizing concepts. For each fixed i ∈ D, let ri, si be two
nonnegative integers such that ri + si = N − 1 so that we can split the vector x into
x = (xi, [x]ri

, [x]si
). Then system (2.2) can be written as

Dqi

t xi = fi(t, xi, [x]ri , [x]si), xpi(0) = x0
i . (3.1)

We do this so that we can consider results in which f , for example, is nondecreasing
in [x]ri and nonincreasing in [x]si . The specific case we consider for this paper is given
in the following definition.
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Definition 3.1. A function f ∈ C(J0 ×RN , RN ) possesses a mixed quasimonotone
property if for each i, fi(t, xi, [x]ri , [x]si) is monotone nondecreasing in [x]ri and
monotone nonincreasing in [x]si .

We note that this definition generalizes quasimonotone monotonicity defined
above, since when ri = 0, f is quasimonotone nonincreasing and when si = 0, f is
quasimonotone nondecreasing. Further, this generalization allows us to consider various
forms of upper and lower solutions, which we specifically define below.

Definition 3.2. Let w, v ∈ Cp(J,RN ), w and v are coupled upper and lower quasiso-
lutions of (3.1) if

Dq
twi ≥ fi(t, wi, [w]ri

, [v]si
), wpi(0) = w0

i ≥ x0
i ,

Dq
t vi ≤ fi(t, vi, [v]ri

, [w]si
), vpi(0) = v0

i ≤ x0
i .

On the other hand, w and v are coupled quasisolutions of (3.1) if

Dq
twi = fi(t, wi, [w]ri

, [v]si
), wpi(0) = x0

i ,

Dq
t vi = fi(t, vi, [v]ri

, [w]si
), vpi(0) = x0

i .

Further, one can define coupled extremal quasisolutions of (3.1) in the usual way.

Next we recall a theoretical existence result via coupled lower and upper solutions
of (3.1) when f possesses a mixed quasimonotone property. We omit the proof, but
note that it follows along the same line as in [12] with modifications as found in the
proof of Theorem 2.14.

Theorem 3.3. Let v, w ∈ Cp(J,RN ) be coupled lower and upper quasisolutions of
(3.1) such that v(t) ≤ w(t) on J and let f ∈ C(Ω, RN ), where

Ω = {(t, x) ∈ J0 ×RN : vp ≤ xp ≤ wp}.

If f posesses a mixed quasimonotone property, then there exists a solution x(t) of
(3.1) such that v(t) ≤ x(t) ≤ w(t) on J , provided v0 ≤ x0 ≤ w0.

Here we state our main result. Using coupled lower and upper solutions relative to
(3.1), we construct sequences {vn(t)} and {wn(t)} such that tpvn and tpwn converge
uniformly and monitonically to tpv and tpw respectively. Where v and w are coupled
minimal and maximal solutions of system (3.1).

Theorem 3.4. Let f ∈ C(J ×RN , RN ) possess a mixed quasimonotone property and
let v0, w0 be coupled lower and upper quasisolutions of system (3.1) such that v0 ≤ w0
on J . Suppose f also satisfies the one-sided Lipschitz condition

fi(t, xi, [x]ri
, [x]si

)− fi(t, yi, [x]ri
, [x]si

) ≥ −Mi(xi − yi),

with Mi ≥ 0, whenever v0
0 ≤ x0 ≤ w0

0 and v0 ≤ y ≤ x ≤ w0 on J . Then there exist
monotone sequences {vn}, {wn} such that

tpvn → tpv, tpwn → tpw,
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monotonically and uniformly on J0, where v and w are coupled minimal and maximal
quasisolutions of (3.1) provided v0

0 ≤ x0 ≤ w0
0. Further if x is any solution of (3.1)

such that v0 ≤ x ≤ w0 then v ≤ x ≤ w on J .

Proof. To begin we note that the sequences we wish to construct are defined as the
unique solutions of the following linear multi-order fractional systems

Dqivn+1i = fi(t, vni, [vn]ri , [wn]si)−Mi(vn+1i − vni),
Dqiwn+1i = fi(t, wni, [wn]ri , [vn]si)−Mi(wn+1i − wni),

(3.2)

where v0 and w0 are defined in our hypothesis. We would like to show that these
sequences are monotone and that the weighted sequences converge uniformly. To do
so we consider the more general multi-order system

Dqiyi = fi(t, ξi, [ξ]ri
, [η]si

)−Mi(yi − ξi),
yp(0) = x0,

(3.3)

with v0 ≤ ξ, η ≤ w0. We note that since (3.3) is linear that a unique solution exists
in Cp(J,RN ) for every particular choice of ξ and η. Therefore, we may construct a
mapping F , such that y = F [ξ, η] will output the unique solution of (3.3). With this
mapping, we can define our sequences as

vn+1 = F [vn, wn], wn+1 = F [wn, vn].

We claim that F is monotone nondecreasing in its first variable and nonincreasing
in its second variable. To prove this, suppose that v0 ≤ ξ ≤ µ ≤ w0 on J , and let
y = F [ξ, η] and z = F [µ, η]. Now, using the quasimonotone property of f , along with
the Lipschitz condition from our hypothesis we have for each i that

Dqizi ≥ fi(t, µi, [ξ]ri
, [η]si

)−Mi(zi − µi)
= fi(t, ξi, [ξ]ri

, [η]si
) + fi(t, µi, [ξ]ri

, [η]si
)− fi(t, ξi, [ξ]ri

, [η]si
)−Mi(zi − µi)

≥ fi(t, ξi, [ξ]ri
, [η]si

)−M1(z1 − ξ1).

Now, since (3.3) is linear, it is Lipschitz of the form (2.5) and is quasimonotone
nondecreasing, so by Theorem 2.13 y ≤ z on J . This gives us that F [ξ, η] ≤ F [µ, ξ],
implying that F is nondecreasing in its first variable as we claimed. Using a similar
argument we can show that F is nonincreasing in its second variable.

From here we can show that the sequences (3.2) are monotone. We will begin by
showing that v0 ≤ F [v0, w0] and w0 ≥ F [w0, v0], to do so, let v1 = F [v0, w0], and then
note that

Dqiv1i = fi(t, v0i, [v0]ri
, [w0]si

)−Mi(v1i − v0i),
and because

Dqiv0i ≤ fi(t, v0i, [v0]ri
, [w0]si

)−Mi(v0i − v0i),
we may apply Theorem 2.13 to show that v0 ≤ v1 on J . Similarly, w1 ≤ w0 on J . Next,
by the monotonicity property of F we have that

v1 = F [v0, w0] ≤ F [w0, v0] = w1.
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Therefore, v0 ≤ v1 ≤ w1 ≤ w0 on J . Using this as our inductive basis step suppose
this is true for up to some k ≥ 1, that is vk−1 ≤ vk ≤ wk ≤ wk−1. Now, letting
vk+1 = F [vk, wk] and wk+1 = F [wk, vk] and using the monotone property of F along
with our induction hypothesis we have that

vk+1 = F [vk, wk] ≥ F [vk−1, wk−1] = vk,

and similarly we have that wk+1 ≤ wk on J . Finally, we can also show that on J

vk+1 = F [vk, wk] ≤ F [wk, vk] = wk+1.

So, by induction we have that vn−1 ≤ vn ≤ wn ≤ wn−1 for all n ≥ 1 on J .
Now we wish to show that the weighted sequences {tpvn} and {tpwn} converge

uniformly on J0. To do so we will apply the Arzelá-Ascoli Theorem; therefore we must
show these sequences are uniformly bounded and equicontinuous. For any n ≥ 0 we
submit that

|tpivni| ≤ tpi
(
|vni − v0i|+ |v0i|

)
≤ tpi

(
|w0i − v0i|+ |v0i|

)
,

implying that the sequence {tpvn} is uniformly bounded. Noting that we can show
a similar result for {tpwn} we conclude that both weighted sequences are uniformly
bounded. Now using this we can show that our weighted sequences are equicontinuous.
First, for simplicity let

f̃i(t, vn) = fi(t, vn−1i, [vn−1]ri
, [wn−1]si

)−Mi(vni − vn−1i),

for all n ≥ 1, and noting that f̃ is Cp continuous and that {tpvn} is uniformly bounded,
we can choose a S ∈ RN+ such that for each i

tpi f̃i(t, vn) ≤ Si

on J0 for any n ≥ 1. Now, choose t, τ such that 0 < t ≤ τ ≤ T . In the following proof
of equicontinuity we use the fact that

τp1(τ − s)q1−1 − tp1(t− s)q1−1 ≤ 0

for 0 < s < t. To show why this is true, consider the function φ(t) = tp1(t− s)q1−1 =
tp1(t− s)−p1 and note that

d
dtφ(t) = p1t

p1−1(t− s)−p1 − p1t
p1(t− s)−p1−1

= −tp1−1(t− s)−p1−1p1s ≤ 0.
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This implies that φ is nonincreasing, therefore φ(τ) − φ(t) ≤ 0. Now for each i we
obtain

|τpivni(τ)− tpivni(t)| ≤
1

Γ(qi)

t∫
0

|τpi(τ − s)qi−1 − tpi(t− s)qi−1||f̃i(t, vn)|ds

+ τpi

Γ(qi)

τ∫
t

(τ − s)qi−1|f̃i(t, vn)|ds

≤ Si
Γ(qi)

t∫
0

[
tpi(t− s)qi−1 − τpi(τ − s)qi−1]sqi−1ds

+ Siτ
pi

Γ(qi)

τ∫
t

(τ − s)qi−1sqi−1ds

≤ Sit
pi

Γ(qi)

t∫
0

(t− s)qi−1sqi−1ds− Niτ
pi

Γ(qi)

τ∫
0

(τ − s)qi−1sqi−1ds

+ 2Siτpi

Γ(qi)tpi

τ∫
t

(τ − s)qi−1ds

= SiΓ(qi)
Γ(2qi)

(tqi − τ qi) + 2Niτpi

Γ(qi)tpi

1
qi

(τ − t)qi

≤ 2N1τ
p1

Γ(q1 + 1)tp1
(τ − t)q1 .

In the case that t = 0, we note that

|τpivni(τ)− x0
i /Γ(qi)| ≤

Si
Γ(qi)

τ∫
0

(τ − s)q1−1ds = Si
Γ(qi + 1)τ

qi .

Now, we can choose K ∈ RN+ such that

Ki ≥ 2Si

Γ(qi+1)
Tpi

tpi
≥ Si

Γ(q1+1) ,

which we note is not dependent on n. Therefore, for each i we have that

|τpivni(τ)− tpivni(t)| ≤ Ki|τ − t|qi ,

for 0 ≤ t ≤ τ ≤ T and for all n ≥ 1. This gives us that {tpvn} is equicontinuous.
Likewise, {tpwn} is also equicontinuous. Therefore, by the Arzelá-Ascoli Theorem,
there exist subsequences of both {tpvn} and {tpwn} that converge uniformly on J0, and
due to their monotonic nature the full sequences themselves also converge uniformly
on J0. Given this, suppose that tpvn → tpv and tpwn → tpw on J0; we wish to show
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that v and w are extremal quasi-solutions of (2.2) on J . To do so, first note that
vn → v pointwise on J , and due to the nature of f̃ we have that

tpivni = x0
i + tpi

Γ(qi)

t∫
0

(t− s)qi−1fi(s, vn−1i[vn−1]ri
, [wn−1]si

)ds

− tpi

Γ(qi)

t∫
0

(t− s)qi−1Mi(vni(s)− vn−1i(s))ds,

which converges uniformly on J0 to

tpivi = x0
i + tpi

Γ(qi)

t∫
0

(t− s)qi−1fi(s, vi, [v]ri
, [w]si

)ds,

implying that

vi = x0
i t
qi−1 + 1

Γ(qi)

t∫
0

(t− s)qi−1fi(s, vi, [v]ri
, [w]si

)ds

on J , and thus that v is a quasisolution to (3.1). By a similar argument w is also a
quasisolution to (3.1).

We will use induction to show that v and w are minimal and maximal quasisolutions.
First, let x be a solution to (3.1), such that v0

0 ≤ x0 ≤ w0
0. By Theorem 2.14 we

know such a solution exists such that v0 ≤ x ≤ w0 on J . Given this, and using the
monotonicity of F we have that

v1 = F [v0, w0] ≤ F [x, x] ≤ F [w0, v0] = w1,

which implies that v1 ≤ x ≤ w1 on J since x = F [x, x]. Using this as a basis step, we
may apply the same steps used above again to inductively show that vn ≤ x ≤ wn on
J for all n ≥ 0, thus implying that v ≤ x ≤ w on J . This gives us that v and w are
extremal quasisolutions and finishes the proof.

We note that if f satisfies a two-sided Lipshitz condition, then v = x = w which
will be the unique solution of (2.2).

In the future, we wish to turn our attention to further generalizations of the
monotone method. Further, we note that the construction of numerical applications of
this type is quite unwieldy, even for simple illustrative examples, but this is something
we would like to pursue for N -systems in the course of time. From here, it would be
compelling to study various physical models that would lend themselves to multi-order
fractional systems. Further, the multi-order generalized exponentials yield potential
for further study into broadening the study of multi-order fractional systems. Our
hope is that this initial study may open the doors to further results in multi-order
systems beyond the use of the Caputo derivative.
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