Identyfikatory
Warianty tytułu
Konferencja
International Armament Conference on „Scientific Aspects of Armament and Safety Technology” (10 ; 15-18.09.2014 ; Ryn, Poland)
Języki publikacji
Abstrakty
The paper presents the results of the depth of penetration tests (DOP) and numerical simulations of the 5.56 × 45 mm SS109 projectile impact onto passive, layered armours placed on the armour backing material. Investigated passive layered armours (with dimensions 100 × 100 mm) were composed of polyester cover; soft ballistic aramid textile layers and Al₂O₃ ceramic tile placed inside rubberized aramid bag. The 5.56 × 45 mm SS109 projectile was stopped for 7-mm thick ceramic tile. In the final armour modular interlayer will be used and each module will have common area near its edges with neighbouring modules. Considering that for 7-mm thick ceramic tile, the areal density of armour equals 42.1 kg/m² . To decrease the areal density of the modular armour to the value of 20÷30 kg/m² the numerical simulations with the use of the Ansys Autodyn v15 program were performed as the base for further DOP tests. One and two-layer armours with two kinds of ceramic tiles (Al₂O₃, SiC), armour steel plate (Armox 500) and titanium plate (Ti₆Al₄V) were investigated. The results of numerical simulation for the most effective armour for protection against the 5.56 × 45 mm SS109 projectile were presented.
Rocznik
Strony
21--40
Opis fizyczny
Bibliogr. 14 poz., il., tab., wykr.
Twórcy
autor
- Military Institute of Armament Technology, 7 Wyszyńskiego St., 05-220 Zielonka, Poland
autor
- Military Institute of Armament Technology, 7 Wyszyńskiego St., 05-220 Zielonka, Poland
Bibliografia
- [1] Huta Stalowa Wola S.A Catalogue of products.
- [2] Brochure of Ceradyne, Inc. corporation: Advanced Body Armor Systems.
- [3] http://www.concepteast.com/sinoarmor/sinoarmor-catalogue.pdf (2014)
- [4] http://www.vestguard.co.uk/downloads.htm (2014).
- [5] Adams B., Simulation on Ballistic Impacts on Armored Civil Vehicles, Master Thesis, Eindhoven University of Technology, 2003.
- [6] Nsiampa N., Coghe F., Dyckmans G., Numerical investigation of the bodywork effect (K-effect), DYMAT, pp. 1561-1566, 2009.
- [7] Hernandez V., Murr L., Anchondo I., Experimental observations and computer simulations for metallic projectile fragmentation and impact crater development in thick metal targets, International Journal of Impact Engineering, 32, pp. 1981-1989, 2006.
- [8] Krishnan K., Sockalingam S., Bansal S., Rajan S., Numerical simulation of ceramic composite armor subjected to ballistic impact, Composites: Part B 41, pp. 583-593, 2010.
- [9] Børvik T., Dey S., Clausen A., Perforation resistance of five different highstrength steel plates subjected to small-arms projectiles, International Journal of Impact Engineering, 36, pp. 948-964, 2009.
- [10] Johnson G., Cook W., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, pp. 541-547, 1983.
- [11] Wiśniewski A., Pacek D., Experimental research and numerical analysis of 9 mm Parabellum projectile penetration of ultra-high molecular weight polyethylene layers, Problemy Techniki Uzbrojenia, nr 3, s. 55-64, 2013.
- [12] Zduniak B., Numeryczne badania doboru dwuwarstwowej osłony balistycznej, rozprawa doktorska, Wojskowa Akademia Techniczna, Warszawa, s. 59, 2011.
- [13] Stanisławek S., Badania odporności balistycznej niejednorodnych struktur ceramicznych, rozprawa doktorska, Wojskowa Akademia Techniczna, Warszawa, s. 60, 62, 2014,
- [14] Morka A., Nowak J., Numerical analyses of ceramic/metal ballistic panels subjected to projectile impact, Journal of KONES Powertrain and Transport, vol. 19, no. 4, pp. 465-472, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f9682f7-d37b-41bb-9857-a1b7773c9ce3