PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Principles of design of specialized technological equipment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a universal principle of design of flexible schemes of specialized technological equipment and a modular principle of design of construction and elements of special technological equipment. The construction elements of equipment, which allow changing the linear dimensions of this equipment in a wide range are designed. The application of designed elements for changing one or several linear dimensions of the equipment is possible in a complex and independently of each other. The possibility of application of proposed design changes of equipment with the preservation of the required strength characteristics is substantiated. Three-dimensional models of construction elements and equipment in general are developed. Researches by changing of reservoir design by using a replaceable construction element are carried out. An analysis of the strength characteristics of integral reservoir and reservoir with a replaceable end wall from various materials is presented.
Czasopismo
Rocznik
Strony
art. no. 2022109
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Volodymyr Dahl East Ukrainian National University, Department of Machinery Engineering and Applied Mechanics, 59-a Central pr., Severodonetsk, 93400, Ukraine
Bibliografia
  • 1. Babichev AP. Fundamentals of vibration technology. Rostov-on-Don: DSTU Publishing Center; 2008.
  • 2. Kartashov IN, et al. Treatment of parts by free abrasives in vibrating reservoirs. Kiev: Highest school; 1975.
  • 3. Romanchenko OV. Technological process of manufacturing of reservoir of vibrational machine-tool from composite materials. International scientific journal Technological audit and production reserves. 2015; 6/3 (26): 31-37.
  • 4. Sankov NN, Zibenberg AN. Mechanization and automation of abrasive treatment of castings. Moscow: Mechanical Engineering; 1972.
  • 5. Ventskevich G. Zh. The influence of some parameters of an abrasive filler on the efficiency of the grinding process in vibrating reservoirs [dissertation]. Odessa, SU; 1986.
  • 6. Mitsyk V.Ya. Intensification of parts treatment in vibrating reservoirs by counter-moving flows of the working medium [dissertation]. Voroshilovgrad; SU; 1986.
  • 7. Romanchenko ОV. Expansion of technological capabilities of vibration equipment by creating conditions for treatment of long parts: [dissertation]. Chernigіv; UA; 2011.
  • 8. Blekhman II, Janelidze G.Yu. Vibration displacement. Moscow: Nauka; 1964.
  • 9. Kopylov Yu.R. Vibration impact hardening. Voronezh: Voronezh Institute of the Ministry of Internal Affairs of Russia; 1999.
  • 10. Lubenskaya LM. Features of energy processes in deformable working medium when treatment of parts in vibrating reservoirs: [dissertation]. Lugansk; UA; 1992.
  • 11. Ciampini D, Papini M, Spelt JK. Impact velocity measurement of media in a vibratory finisher. Journal of Materials Processing Technology. 2007;183:347-357. https://doi.org/10.1016/j.jmatprotec.2006.10.024.
  • 12. Barletta M, Rubino G, Valentini PP. Experimental investigation and modeling of fluidized bed assisted drag finishing according to the theory of localization of plastic deformation and energy absorption. Int J Adv Manuf Technol. 2015;77: 2165-2180. https://doi.org/10.1007/s00170-014-6620-y.
  • 13. Kang YS, Hashimoto F, Johnson SP, Rhodes JP. Discrete element modeling of 3D media motion in vibratory finishing process. CIRP Annals - Manufacturing Technology. 2017;66(1):313-316. https://doi.org/10.1016/j.cirp.2017.04.092.
  • 14. Mitsyk AV, Fedorovich VA. A new type of finishing and stripping method and an aggregated vibrating machine of vibration and centrifugal dynamic action. Cutting and tools in technological systems. 2016; 86: 96-102.
  • 15. Babichev AP, Pastukhov FA, Motrenko PD, Chuchukalov AP. Analysis of technological schemes of vibration impact hardening treatment of long parts. Hardening technologies and coatings. Mechanical hardening treatment. 2006;5:3-5.
  • 16. Davidson DA. Surface finishing reaches new heights: Mass media finishing techniques can improve aircraft part performance and service life. Metal finishing. 2005;103(3): 25-28.
  • 17. Sangid MD, Stori JA, Ferriera PM. Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components - part I: Experimental study of process parameters. Int J Adv Manuf. Technol. 2011;53: 545-560.
  • 18. Babichev AP. editor. The use of vibration technologies in the operations of finishing and cleaning treatment of parts (cleaning, washing, removal of burrs, edge treatment). Rostov-on-Don: DSTU; 2010.
  • 19. Romancheno OV, Romanchenko Yu.A. Review of devices for auxiliary operations of vibration Treatment. Vinyk of Volodymyr Dahl East Ukrainian National University. 2016; (226): 76-86.
  • 20. Krol O, Sokolov V, Tsankov P. Modeling of vertical spindle head for machining center. Journal of Physics: Conference Series. 2020;1553:012012. https://doi.org/10.1088/1742-6596/1553/1/012012.
  • 21. Krol O, Sokolov V. Modeling of spindle node dynamics sing the spectral analysis method. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. 2020;1:35-44. https://doi.org/10.1007/978-3-030-50794-7_4.
  • 22. Krol O, Porkuian O, Sokolov V, Tsankov P. Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade'mie bulgare des Sciences. 2019; 72(11): 1546-1556. https://doi.org/10.7546/CRABS.2019.11.12.
  • 23. Sokolov V, Porkuian O, Krol O, Baturin Y. Design calculation of electrohydraulic servo drive for technological equipment. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. 2020;1: 75-84. https://doi.org/10.1007/978-3-030-50794-7_8.
  • 24. Sokolov V, Porkuian O, Krol O, Stepanova O. Design calculation of automatic rotary motion electrohydraulic drive for technological equipment. in: advances in design. Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. 2021;1:133-142. https://doi.org/10.1007/978-3-030-77719-7_14.
  • 25. Mitsyk AV, Fedorovich VA. Analytics, comments and classification of finishing and cleaning vibration treatment technologies, created by combining various schemes of energy impact. Modern technologies in machinery. NTU "KhPI". 2016;1: 175-179.
  • 26. Kotliar A, Basova Y, Ivanov V. et all. Ensuring the economic efficiency of enterprises by multi-criteria selection of the optimal manufacturing process. Management and Production Engineering Review. 2020;11(1):52-61. https://doi.org/10.24425/mper.2020.132943.
  • 27. Mitsyk AV. Multi-energy technologies and modular equipment in the practice of finishing and cleaning vibration treatment of parts with free abrasive mediim. Vinyk of Volodymyr Dahl East Ukrainian National University. 2015; 5(222): 64-72.
  • 28. Kalmykov MA, Romanchenko OV. Determination of the functional dependence between the amplitude of the container and its length. Eastern-European Journal of enterprise technologies. 2011; 3/7:19-23.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f95abde-ca8e-497f-8d4f-127e51523b0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.