PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Chemical reduction of nitrate by zerovalent iron nanoparticles adsorbed radiation-grafted copolymer matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Applications of Radiation Science and Technology (ICARST-2017) (24-28 April 2017 ; Vienna, Austria)
Języki publikacji
EN
Abstrakty
EN
This research specifically focused on the development of a novel methodology to reduce excess nitrate in drinking water utilizing zerovalent iron nanoparticles (nZVI)-stabilized radiation-grafted copolymer matrix. nZVI was synthesized by borohydrate reduction of FeCl3 and stabilized on acrylic acid (AAc)-grafted non-woven polyethylene/polypropylene (NWPE/PP-g-AAc) copolymer matrix, which was grafted using gamma radiation. The use of nZVI for environmental applications is challenging because of the formation of an oxide layer rapidly in the presence of oxygen. Therefore, radiation-grafted NWPE/PP synthetic fabric was used as the functional carrier to anchor nZVI and enhance its spreading and stability. The chemical reduction of nitrate by nZVI-adsorbed NWPE/PP-g-AAc (nZVI-Ads-NWP) fabric was examined in batch experiments at different pH values. At low pH values, the protective layers on nZVI particles can be readily dissolved, exposing the pure iron particles for efficient chemical reduction of nitrate. After about 24 h, at pH 3, almost 96% of nitrate was degraded, suggesting that this reduction process is an acid-driven, surface-mediated process. The nZVI-water interface has been characterized by the 1-pK Basic Stern Model (BSM). An Eley-Rideal like mechanism well described the nitrate reduction kinetics. In accordance with green technology, the newly synthesized nZVI-Ads-NWP has great potential for improving nitrate reduction processes required for the drinking water industry.
Czasopismo
Rocznik
Strony
269--275
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Sri Lanka Atomic Energy Board, No. 60/460, Orugodawatta, Wellampitiya 10600, Sri Lanka, Tel.: +94 77 341 0388, Fax: +94 11 25 33448
  • Sri Lanka Atomic Energy Board, No. 60/460, Orugodawatta, Wellampitiya 10600, Sri Lanka, Tel.: +94 77 341 0388, Fax: +94 11 25 33448
autor
  • Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
autor
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 38a Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 38a Nadbystrzycka Str., 20-618 Lublin, Poland
  • Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
autor
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 38a Nadbystrzycka Str., 20-618 Lublin, Poland
  • National Institute of Fundamental Studies, Hantana Road, Kandy, 20000, Sri Lanka
Bibliografia
  • 1. World Health Organization. (1974). Safe Drinking Water Quality Act Public Law 93-523. U.S. Government Printing Office.
  • 2. World Health Organization. (2004). Guidelines for drinking-water quality. Vol. 1. Recommendations. Geneva: WHO.
  • 3. Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian J. Environ. Health, 42, 28–39.
  • 4. Weerasooriya, S. V. R., & Dissanayake, C. B. (1992). Modelling the nitrosation kinetics in simulated natural environmental conditions. Toxicol. Environ. Chem., 36, 131–137.
  • 5. Guter, G. (1995). Nitrate removal from contaminated groundwater by anion exchange. In A. K. Sengupta (Ed.), Ion exchange technology: Advances in pollution control (pp. 61–113). Lancaster, PA: Technomic Publishing Co. Inc.
  • 6. Mercado, A., Libhaber, M., & Soares, M. I. M. (1988). In situ biological groundwater denitrification: Concepts and preliminary fi eld tests. Water Sci. Technol., 20, 197–209.
  • 7. Bhatnagar, A., & Sillanpaa, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J., 168(2), 493–504.
  • 8. Schoeman, J. J., & Styen, A. (2003). Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination , 155, 15–26.
  • 9. Meile, L. J., & Johnson, A. J. (1983). Waste generation reduction – nitrate FY State Report. Trends in analytical chemistry. USA.
  • 10. Pintar, A., Bastista, J., & Levec, J. (2001). Catalytic denitrification: Direct and indirect removal of nitrates from potable water. Catal. Today , 66(2/4), 503–510.
  • 11. Urbain, V., Benoit, R., & Manem, J. (1996). Membrane bioreactor: a new treatment tool. J. Am. WaterWorks Assoc., 88, 75–86.
  • 12. Rhodes, F. H., & Carty, J. T. (1925). The corrosion of certain metals by carbon tetrachloride. Ind. Eng. Chem., 17(9), 909–911.
  • 13. Murfy, A. P. (1991). Chemical removal of nitrate from water. Nature , 350, 223–225.
  • 14. Young, G. K., Bungay, H. R., Brown, L. M., & Parson, W. A. (1964). Chemical reduction of nitrate in water. J. Water Pollut.Control Federation, 36, 395–398.
  • 15. Siantar, D. P., & Schreier, C. G. (1995). Transformation of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate by iron powder and by H 2/Pd/ Table 2. Al 2 O 3. In American Chemical Society National Meeting, Washington, DC, April 2–6, 1995. American Chemical Society.
  • 16. Ratnayake, S., Schild, D., Maczka, E., Jartych, E., Luetzenkirchen, J., Kosmulski, M., Makehelwala, M., Weragoda, S. K., Bandara, A., Wijayawardana, R., Chandrajith, R., Indrarathne, S. P., & Weerasooriya,R. (2016). A novel radiation-induced grafting methodology to synthesize stable zerovalent iron naoparticles at ambient atmospheric conditions. Colloid Polym. Sci., 294(10), 1557–1569.
  • 17. Atkins, P. W. (1986). Physical chemistry. Oxford University Press.
  • 18. Yang, G. C. C., & Lee, H. -L. (2005). Chemical reduction of nitrate by nano-sized iron: Kinetics and pathways. Water Res., 39, 884–894.
  • 19. Wang, W., Jin, Z., Li, T., Zhang, H., & Gao, S. (2006). Preparation of spherical iron nanoclusters in ethanolwater solution for nitrate removal. Chemosphere, 65, 1396–1404.
  • 20. Hwang, Y. K. (2011). Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater., 185, 1513–1521.
  • 21. Choe, S., Chang, Y. -Y., Hwang, K. -Y., & Khim, J. (2000). Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 41, 1307–1311.
  • 22. Rodriguez-Maroto, J. M., Garcia-Herruzo, F., Garcia Rubio, A., Gomez-Lahoz, C., & Vereda-Alonso, C. (2009). Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 74(6), 804–809.
  • 23. Ahn, S. C., Oh, S. -Y., & Cha, D. K. (2008). Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J. Hazard. Mater., 156(1/3), 17–22.
  • 24. Jiang, Z., Zhang, S., Pan, B., Wang, W., Wang, X., Lv, L., Zhang, W., & Zhang, Q. (2012). A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction. J. Hazard. Mater., 233/234, 1–6.
  • 25. Jiang, Z., Lv, L., Zhang, W., Du, Q., Pan, B., Yang, L., & Zhang, Q. (2011). Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res., 45, 2191–2198.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f93642d-90fd-4cfa-83c4-56efeb8dfcd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.