PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected properties of particleboards made of different cultivars of apple wood particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selected properties of particleboards made of different cultivars of apple wood particles. The aim of the research was to determine the density of wood and the possibility of using particles from various cultivars of apple wood for the production of particleboards. The following apple cultivars were used in the research: Gala (Malus domestica Borkh), Prince (Red Jonathan Cltv.), Golden Delicious (Malus domestica 'Golden Delicious' Cltv.), Champion (Malus domestica 'Szampion' Cltv.). As part of the work, three-layer particleboards were produced in laboratory conditions from particles made from branches, and selected physical and mechanical properties of the obtained boards, as well as the wood density of the branches themselves, were examined. The tests confirmed the existence of differences between the density of the tested apple wood, as well as between the properties of the produced particleboards. The research also showed the possibility of producing boards for the furniture industry using wood from the mentioned apple cultivars.
PL
Wybrane właściwości płyt wiórowych wykonanych z cząstek drewna różnych kultywarów jabłoni. Celem badań było określenie gęstości drewna oraz możliwości wykorzystania wiórów z różnych gatunków drewna jabłoni do produkcji płyt wiórowych. W badaniach wykorzystano następujące kultywary jabłoni: Gala (Malus domestica Borkh), Prince (Red Jonathan Cltv.), Golden Delicious (Malus domestica ‘Golden Delicious’ Cltv.), Champion (Malus domestica ‘Szampion’ Cltv.). W ramach pracy wyprodukowano w warunkach laboratoryjnych trójwarstwowe płyty wiórowe z wiórów powstałych z gałęzi oraz zbadano wybrane właściwości fizyczne i mechaniczne uzyskanych płyt, jak również gęstości drewna samych gałęzi. Badania potwierdziły występowanie różnic między gęstością badanego drewna jabłoni, jak również między właściwościami wytworzonych płyt wiórowych. Badania wykazały również możliwości produkcji płyt dla przemysłu meblarskiego z wykorzystaniem drewna wspomnianych kultywarów jabłoni.
Twórcy
  • Faculty of Wood Technology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
Bibliografia
  • 1. AISIEN, F. A., AMENAGHAWON, A. N., BIENOSE, K. C. (2015). Particle boards produced from cassava stalks: Evaluation of physical and mechanical properties. South African Journal of Science, 111(5–6). https://doi.org/10.17159/sajs.2015/20140042.
  • 2. AKINYEMI, A. B., AFOLAYAN, J. O., OGUNJI OLUWATOBI, E. (2016). Some properties of composite corn cob and sawdust particle boards. Construction and Building Materials, 127, 436–441. https://doi.org/10.1016/j.conbuildmat.2016.10.040.
  • 3. ATOYEBI, O. D., GANA, J. A., MODUPE, A. E., IKPOTOKIN, I., ATOYEBI, O. D., OSUEKE, C. O., BADIRU, S., GANA, A. J., MODUPE, A. E., TEGENE, G. A., IKPOTOKIN, I. (2019). Evaluation of Particle Board from Sugarcane Bagasse and Corn Cob. International Journal of Mechanical Engineering and Technology (IJMET), 10(01), 1193–1200. http://www.iaeme.com/IJMET/index.asp1193http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=01http://www.iaeme.com/IJMET/index.asp1194http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&Type=01.
  • 4. AURIGA, R., BORYSIUK, P., SMULSKI, P. (2019). Apple wood from an annual care cut as a raw material additive for particleboard production. Biuletyn Informacyjny OB-RPPD 1-2, 17-24. https://doi.org/10.32086/biuletyn.2019.02.
  • 5. BEKALO, S.A., REINHARDT, H.W. (2010). Fibers of Coffee Husk and Hulls for the Production of Particleboard. Materials and Structures, 43, 1049-1960. https://doi.org/10.1617/s11527-009-9565-0.
  • 6. FAO (2019). Global forest products facts and figures 2018. Forest Products and Statistics Team, Forestry Policy and Resources Division, FAO Forestry Department, E-mail: FPS@fao.org, Website: http://www.fao.org/forestry/statistics.
  • 7. CICHY, W., WITCZAK, M., WALKOWIAK, M. (2017). Fuel properties of woody biomass from pruning operations in fruit orchards. BioResources BioResources 12(3), 6458-6470. https://doi.org/10.15376/biores.12.3.6458-6470.
  • 8. DYJAKON, A., BOER, J. DEN, BUKOWSKI, P., ADAMCZYK, F., FRĄCKOWIAK, P. (2016). Wooden biomass potential from apple orchards in Poland. Drewno, 59(198), 73–86. https://doi.org/10.12841/wood.1644-3985.162.09.
  • 9. EN 310: 1993 Wood–based panels: Determination of modulus of elasticity in bending and of bending strength. European Committee for Standardization, Brussels, Belgium.
  • 10. EN 312: 2010 Particleboards. Specifications. European Committee for Standardization, Brussels, Belgium.
  • 11. EN 317: 1993 Particleboards and fibreboards – Determination of swelling in thickness after immersion in water. European Committee for Standardization, Brussels, Belgium.
  • 12. EN 319: 1993 Particleboards and fibreboards – Determination of tensile strength perpendicular to the plane of the board. European Committee for Standardization, Brussels, Belgium.
  • 13. EN 320: 2011 Particleboards and fiberboards. Determination of resistance to axial withdrawal of screws. European Committee for Standardization, Brussels, Belgium.
  • 14. EN 323: 1994 Wood-based panels - Determination of density. European Committee for Standardization, Brussels, Belgium
  • 15. GÜLER, C., BÜYÜKSARI, Ü. (2011). Effect of Production Parameters on the Physical and Mechanical Properties of Particleboards Made From Peanut (Arachis Hypogaea L.) Hull. BioResources 6(4), 5027-5036, https://doi.org/10.15376/biores.6.4.5027-5036.
  • 16. KARLIDAǦ, H., ASLANTAŞ, R., EŞITKEN, A. (2014). Effects of interstock (M9) length grafted onto MM106 rootstock on sylleptic shoot formation, growth and yield in some apple cultivars. Tarim Bilimleri Dergisi, 20(3), 331–336. https://doi.org/10.1501/tarimbil_0000001291.
  • 17. KOWALUK, G., SZYMANOWSKI, K., KOZLOWSKI, P., KUKULA, W., SALA, C., ROBLES, E., CZARNIAK, P. (2020). Functional Assessment of Particleboards Made of Apple and Plum Orchard Pruning. Waste and Biomass Valorization, 11(6), 2877–2886. https://doi.org/10.1007/s12649-018-00568-8.
  • 18. KUDEŁKO, J. (2016). Rola przemysłu w rozwoju regionów Polski Wschodniej. Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 30(3), 147–158.
  • 19. LEONTE, E., CHIRAN, A., UNGUREANU, G., ROBU, M., FRONEA, A. M. (2020). The Main Technical-Economic Aspects of the Fruit Market at Research and Development Station for Fruit Growing Iași. Bulletin UASVM Horticulture, 77(1), 1843–5394. https://doi.org/10.15835/buasvmcn-hort:2019.0022.
  • 20. LINDSTROM, H., EVANS, R., REALE, M. (2005). Implications of selecting tree clones with high modulus of elasticity. New Zealand Journal of Forestry Science 35(1): 50-71.
  • 21. LYKIDIS, C., GRIGORIOU, A., BARBOUTIS, I. (2014). Utilisation of wood biomass residues from fruit tree branches, evergreen hardwood shrubs and Greek fir wood as raw materials for particleboard production. Part A. Mechanical properties. Wood Material Science and Engineering, 9(4), 202–208. https://doi.org/10.1080/17480272.2013.875589.
  • 22. NIKVASH, N., KRAFT, R., KHARAZIPOUR, A., EURING, M. (2010). Comparative properties of bagasse, canola and hemp particle boards. European Journal of Wood and Wood Products, 68(3). https://doi.org/10.1007/s00107-010-0465-3.
  • 23. PELC, O., KOWALUK, G. (2023). Selected physical and mechanical properties of particleboards with variable shares of nettle Urtica dioica L. lignocellulosic particles. Annals of WULS - SGGW. Forestry and Wood Technology 123: 30-40. https://doi.org/10.5604/01.3001.0053.9307.
  • 24. ROMAŃSKI, L., DYJAKON, A., ADAMCZYK, F., FRĄCKOWIAK, P. (2014). Problems with Deriving the Fruit Tree Pruned Biomass for Energy Use. Agricultural Engineering 3 (151 ):157 -167. https://doi.org/10.14654/ir.2014.151.068.
  • 25. TANGJUANK, S. (2011). Thermal insulation and physical properties of particleboards from pineapple leaves. International Journal of Physical Sciences, 6(19), 4528–4532. https://doi.org/10.5897/IJPS11.1057.
  • 26. TOUGERON, K., HANCE, T. (2021). Impact of the COVID-19 pandemic on apple orchards in Europe. Agricultural Systems, 190. https://doi.org/10.1016/j.agsy.2021.103097.
  • 27. WRONKA, A., KOWALUK, G. (2019). Selected properties of particleboard made of raspberry Rubus idaeus L. lignocellulosic particles. Annals of WULS - SGGW. Forestry and Wood Technology 105: 113-124. https://doi.org/10.5604/01.3001.0013.7727
  • 28. WRONKA, A., KOWALUK, G. (2022). The Influence of Multiple Mechanical Recycling of Particleboards on Their Selected Mechanical and Physical Properties. Materials 15(23): 8487. https://doi.org/10.3390/ma15238487.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f8c9d5a-a80a-41c9-92f0-270bfb12fcd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.