PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First generation of a three-dimensional tomographic model for the uppermost mantle beneath the Zagros collision zone-constraints from full-waveform inversion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We construct a three-dimensional model of seismic velocity structure beneath the Zagros collision zone by analyzing phase measurements of seismic waveform recordings from earthquakes. We used entire waveforms from 37 earthquakes and followed a multi-scale approach for periods between 20 and 80 s. As a starting model, we used the first generation of the Collaborative Seismic Earth Model, applied the adjoint method to compute model gradients, and utilized the Broyden- Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm to reconstruct the uppermost mantle seismic velocity struc- ture. The Zagros collision zone consists of the margin of the Arabian platform (the Zagros Fold-and-Thrust Belt) and the margin of the Eurasian plate (the Iranian microplates). The retrieved model reveals a strong shear wave velocity contrast at a depth of approximately 180 km along the Zagros mountain belt, and topography at the surface is a piece of evidence that the deformation of the transition zone stops along the Zagros. We interpret this as an interaction between the two continental lithospheres that end at this depth. We observe that the sub-crustal lithosphere of the studied region was constructed from relatively high shear velocity structures beneath Central Iran as well as the Lut block at 80-150 km depth and continuity of high-velocity structure throughout the margin of the Arabian lithosphere from 70- to 200-km depth. It explains continental collision caused earlier thickening during the convergence of the Arabian platform toward the northeast. This observation indicates that the lithosphere of Iranian microplates has a relatively warm structure. It also shows the non-uniform distri- bution of a sharp velocity contrast between this structure and the strong low-velocity structure underlying it, marking the lithosphere and asthenosphere boundary (LAB). Our results locate this boundary at approximately 119-km depth. On the other hand, we observed a thickened and cold lithosphere for the margin of the Arabian lithosphere.
Czasopismo
Rocznik
Strony
11--24
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
  • Department of Seismology, University of Tehran, Tehran, Iran
  • Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
  • Department of Earth and Environmental Sciences, Ludwig Maximilians University of Munich, Ingolstadt, Germany
  • Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
  • Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
autor
  • rahimih@ut.ac.ir
  • Department of Seismology, University of Tehran, Tehran, Iran
autor
  • Department of Earth and Environmental Sciences, Ludwig Maximilians University of Munich, Ingolstadt, Germany
  • Mondaic AG, Zurich, Switzerland
  • Mondaic AG, Philadelphia, USA
  • Mondaic AG, Zurich, Switzerland
  • Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Bibliografia
  • 1. Afanasiev M, Boehm C, van Driel M, Krischer L, Rietmann M, May DA, Knepley MG, Fichtner A (2019) Modular and flexible spec- tral-element waveform modelling in two and three dimensions. Geophys J Int 216(3):1675-1692
  • 2. Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence his- tory across zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401-419
  • 3. Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monie P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148(5-6):692-725
  • 4. Alinaghi A, Koulakov I, Thybo H (2007) Seismic tomographic imaging of p-and s-waves velocity perturbations in the upper mantle beneath Iran. Geophys J Int 169(3):1089-1102
  • 5. Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. Zagros Hindu Kush Himalaya Geodyn Evolut 3:5-32
  • 6. Blom N, Gokhberg A, Fichtner A (2020) Seismic waveform tomography of the central and eastern mediterranean upper mantle. Solid Earth 11(2):669-690
  • 7. Bozdag E, Trampert J (2008) On crustal corrections in surface wave tomography. Geophys J Int 172(3):1066-1082
  • 8. Bunks C, Saleck FM, Zaleski S, Chavent G (1995) Multiscale seismic waveform inversion. Geophysics 60(5):1457-1473
  • 9. Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006) Slab detachment beneath eastern anatolia: a possible cause for the formation of the north anatolian fault. Earth Planet Sci Lett 242(1-2):85-97
  • 10. Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006) Slab detachment beneath eastern anatolia: a possible cause for the formation of the north anatolian fault. Earth Planet Sci Lett 242(1-2):85-97
  • 11. Fichtner A (2009) Full waveform inversion for structural and source parameters (Unpublished doctoral dissertation). LMU Munich
  • 12. Fichtner A (2010) Full seismic waveform modelling and inversion. Springer Science & Business Media
  • 13. Fichtner A, Villasenor A (2015) Crust and upper mantle of the western mediterranean- constraints from full-waveform inversion. Earth Planet Sci Lett 428:52-62
  • 14. Fichtner A, Bunge H-P, Igel H (2006) The adjoint method in seismology: I theory. Phys Earth Planet Interiors 157(1-2):86-104
  • 15. Fichtner A, Kennett B, Igel H, Bunge H (2009) Spectral-element simulation and inversion of seismic waves in a spherical section of the earth. J Numer Anal Ind Appl Math 4:11-22
  • 16. Fichtner A, Kennett BL, Igel H, Bunge H-P (2010) Full waveform tomography for radially anisotropic structure: new insights into present and past states of the australasian upper mantle. Earth Planet Sci Lett 290(3-4):270-280
  • 17. Fichtner A, Kennett BL, Trampert J (2013) Separating intrinsic and apparent anisotropy. Phys Earth Planet Inter 219:11-20
  • 18. Fichtner A, van Herwaarden D-P, Afanasiev M, Simute S, Krischer L, Çubuk-Sabuncu Y, Taymaz T, Colli L, Saygin E, Villasenor A et al (2018) The collaborative seismic earth model: generation 1. Geophys Res Lett 459:4007-4016
  • 19. Gao Y, Tilmann F, van Herwaarden D-P, Thrastarson S, Fichtner A, Heit B, Yuan X, Schurr B (2021) Full waveform inversion beneath the central andes: insight into the dehydration of the nazca slab and delamination of the back-arc lithosphere. J Geophys Res Solid Earth 126 (7), 2021JB021984
  • 20. Hatzfeld D, Tatar M, Priestley K, Ghafory-Ashtiany M (2003) Seismological constraints on the crustal structure beneath the Zagros mountain belt (Iran). Geophys J Int 155(2):403-410
  • 21. Igel H (2017) Computational seismology: a practical introduction. Oxford University Press, Oxford
  • 22. Kaban MK, Petrunin AG, El Khrepy S, Al-Arifi N (2018) Diverse continental subduction scenarios along the Arabia-Eurasia collision zone. Geophys Res Lett 45(14):6898-6906
  • 23. Kaviani A, Paul A, Bourova E, Hatzfeld D, Pedersen H, Mokhtari M (2007) A strong seismic velocity contrast in the shallow mantle across the zagros collision zone (iran). Geophys J Int 171(1):399-410
  • 24. Kaviani A, Sandvol E, Moradi A, Rumpker G, Tang Z, Mai PM (2018) Mantle transition zone thickness beneath the middle east: Evidence for segmented tethyan slabs, delaminated litho- sphere, and lower mantle upwelling. J Geophys Res Solid Earth 123(6):4886-4905
  • 25. Komatitsch D, Ritsema J, Tromp J (2002) The spectral-element method, beowulf computing, and global seismology. Science 298(5599):1737-1742
  • 26. Krischer L, Fichtner A, Zukauskaite S, Igel H (2015) Large-scale seis- mic inversion framework. Seismol Res Lett 86(4):1198-1207
  • 27. Love A (1927) A treatise on the theory of elasticity, vol 15, 4th edn. Cambridge Univ, Press
  • 28. Maggi A, Priestley K (2005) Surface waveform tomography of the turkish-iranian plateau. Geophys J Int 160(3):1068-1080
  • 29. Maggi A, Jackson J, Mckenzie D, Priestley K (2000) Earthquake focal depths, effective elastic thickness, and the strength of the conti- nental lithosphere. Geology 28(6):495-498
  • 30. Maheri-Peyrov M, Ghods A, Abbasi M, Bergman E, Sobouti F (2016) Ml shear wave velocity tomography for the Iranian plateau. Geophys Suppl Monthly Notices R Astron Soc 205(1):179-191
  • 31. Mahmoodabadi M, Yaminifard F, Tatar M, Kaviani A, Motaghi K (2019) Uppermantle velocity structure beneath the zagros collision zone, central iran and alborz from nonlinear teleseismic tomography. Geophys J Int 218(1):414-428
  • 32. Manaman NS, Shomali H (2010) Upper mantle s-velocity structure and moho depth variations across zagros belt, arabian-eurasian plate boundary. Phys Earth Planet Inter 180(1-2):92-103
  • 33. Mohammadi N, Gholami A, Rahimi H, Aoudia A (2020) Simultaneous tomography of all periods in surface wave analysis. Phys Earth Planet Inter 298:106338
  • 34. Mohammadi N, Rahimi H, Gholami A, Pachhai S, Aoudia A (2022) Shear-wave velocity structure of upper mantle along the zagros collision zone. Tectonophysics 837:229444
  • 35. Montagner J (1986) Regional three-dimensional structures using long- period surface waves. Ann Geophys 4(B3):283-294
  • 36. Mostafanejad A, Shomali ZH, Mottaghi AA (2011) 3-d velocity structure of damavand volcano, iran, from local earthquake tomography. J Asian Earth Sci 42(6):1091-1096
  • 37. Motaghi K, Tatar M, Priestley K, Romanelli F, Doglioni C, Panza G (2015) The deep structure of the iranian plateau. Gondwana Res 28(1):407-418
  • 38. Mouthereau F, Lacombe O, Verges J (2012) Building the zagros collisional oro639 gen: timing, strain distribution and the dynamics of arabia/eurasia plate convergence. Tectonophysics 532:27-60
  • 39. Movaghari R, JavanDoloei G, Yang Y, Tatar M, Sadidkhouy A (2021) Crustal radial anisotropy of the Iran plateau inferred from ambient noise tomography. J Geophys Res Solid Earth 126(4), e2020JB020236
  • 40. Nocedal J, Wright SJ (2006) Quadratic programming. Numer Optim, pp 448-492
  • 41. Nouri F, Asahara Y, Azizi H, Yamamoto K, Tsuboi M (2017) Geo- chemistry and petrogenesis of the eocene back arc mafic rocks in the zagros suture zone, northern noorabad, western iran. Geo- chemistry 77(3):517-533
  • 42. Panning M, Romanowicz B (2006) A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys J Int 167(1):361-379
  • 43. Paul A, Kaviani A, Hatzfeld D, Vergne J, Mokhtari M (2006) Seismological evidence for crustal-scale thrusting in the zagros mountain belt (iran). Geophys J Int 166(1):227-237
  • 44. Paul A, Hatzfeld D, Kaviani A, Tatar M, Pequegnat C (2010) Seismic imaging of the lithospheric structure of the zagros mountain belt (iran). Geol Soc 330(1):5-18
  • 45. Rahmani M, Motaghi K, Ghods A, Sobouti F, Talebian M, Ai Y, Chen L (2019) Deep velocity image of the north zagros collision zone (iran) from regional and teleseismic tomography. Geophys J Int 219(3):1729-1740
  • 46. Seiberlich C, Ritter J, Wawerzinek B (2013) Topography of the litho- sphere- asthenosphere boundary below the upper rhine graben rift and the volcanic eifel region, central europe. Tectonophysics 603:222-236
  • 47. Shad Manaman N, Shomali H, Koyi H (2011) New constraints on upper-mantle svelocity structure and crustal thickness of the iranian plateau using partitioned wave666 form inversion. Geophys J Int 184(1):247-267
  • 48. Shomali ZH, Keshvari F, Hassanzadeh J, Mirzaei N (2011) Lithospheric structure beneath the zagros collision zone resolved by non-linear teleseismic tomography. Geophys J Int 187(1):394-406
  • 49. Sobolev SV, Zeyen H, Stoll G, Werling F, Altherr R, Fuchs K (1996) Upper mantle temperatures from teleseismic tomography of french massif central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett 139(1-2):147-163
  • 50. Talebi A, Koulakov I, Moradi A, Rahimi H, Gerya T (2020) Ongoing formation of felsic lower crustal channel by relamination in zagros collision zone revealed from regional tomography. Sci Rep 10(1):8224
  • 51. Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the zagros mountains of iran. Geophys J Int 156(3):506-526
  • 52. Thrastarson S, van Herwaarden D-P, Krischer L, Fichtner A (2021) Lasif: Large scale seismic inversion framework, an updated version
  • 53. Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys J Int 160(1):195-216
  • 54. Wehner D, Blom N, Rawlinson N, Bohm C, Miller MS, Supendi P, Widiyantoro S (2022) Sassy21: A 3-d seismic structural model of the lithosphere and underlying mantle beneath southeast asia from multi-scale adjoint waveform tomography. J Geophys Res Solid Earth, 127 (3), e2021JB022930
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f8623ec-b9da-455e-be17-c50eac91eae7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.