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Abstract. Let F be a field of characteristic p > 0, S = F[[X]] the ring of formal
power series in the indeterminate X with coefficients in the field F', F'’* the multiplica-
tive group of F', G = G, x B a finite group, where G, is a p-group and B is a p’-group.
We give necessary and sufficient conditions for G and F' under which there exists a co-
cycle A € Z%(G, F*) such that every indecomposable projective S-representation of
G with the cocycle A is the outer tensor product of an indecomposable projective
S-representation of G, and an irreducible projective S-representation of B.

1. Introduction

Let F' be a field of characteristic p > 0 and G = G}, X B, where G, is a Sylow
p-subgroup. Blau [6] and Gudyvok [10, 11| proved that every finitely gen-
erated F'G-module is the outer tensor product V#W of an indecomposable
FGp-module V' and an irreducible F'B-module W if and only if either Gy, is
cyclic or F' is a splitting field for B. Gudyvok [12, 13] also investigated a sim-
ilar problem for group rings KG, where K is a complete discrete valuation
ring. In particular, he proved that if K is of characteristic p > 0 and T is
the quotient field of K, then every indecomposable K G-module is of the form
V#W if and only if either |G,| = 2 or T is a splitting field for B. In the paper
[2], the results of Blau and Gudyvok were generalized to the twisted group
rings S*G, where G = Gy, x B, S = F or S is a complete discrete valuation
ring of characteristic p > 0.



10 Leonid F. Barannyk, Dariusz Klein

In this paper we continue the study of indecomposable projective represen-
tations of G = G, x B over the ring S = F[[X]] as begun in [2].

Let us present the main results of the paper. We assume that F' is a field
of characteristic p > 0, S* the unit group of S, |G,| # 1, |B| # 1, and if
Gy is non-Abelian, then F' contains a primitive g™ root of 1 for every prime
q | | B| such that p | (g —1). Given a cocycle \: G x G — S* in Z%(G, S*), we
denote by S*G the twisted group ring of the group G over the ring S with the
2-cocycle A. By an S*G-module we mean a finitely generated left S*G-module
which is S-free. Given u € Z%(G,, S*), the kernel Ker(u) of  is the union of
all cyclic subgroups (g) of G, such that the restriction of p to (g) x (g) is
a coboundary. We recall from [4, p. 268] that G}, C Ker(u), Ker(u) is a normal
subgroup of G, and the restriction of p to Ker(u) x Ker(u) is a coboundary
(see also [3, p. 197] for a simple proof). Up to cohomology in Z2(G,, S*),
we have figq = pla,g = 1 for all g € G, and a € Ker(u). In what follows, we
assume that every cocycle u € Z%(Gp,S*) under consideration satisfies this
condition. If H is a subgroup of G, then the restriction of A € Z2(G, S*) to
H x H will also be denoted by A. In this case, S*H is a subring of S*G.
A group G is of symmetric type if it decomposes into a direct product of two
isomorphic groups. Denote

[t if [F:FP]=p,
Z(F)_{oo if [F:FP]:ZO.

Let G = G, x B, u € Z*(G,,S*) and v € Z*(B,S*). Then the map
uxv:GxG— S* defined by

(M X V)I1bl,év262 = Hzyi,29 " Vby,bo

for all z1,29 € Gy, b1,ba € B belongs to Z*(G,S*). Every cocycle A\ €
Z?(G, 8*) is cohomologous to u x v, where y is the restriction of A to G, X G,
and v is the restriction of A\ to B x B. From now on, we suppose that each
cocycle A € Z2(G, S*) under consideration satisfies the condition A = u x v.
For any A = p x v € Z%(G,S*), we have S’\G =~ StG, @5 S¥B. If every
indecomposable S*G-module is isomorphic to the outer tensor product V#W,
where V' is an indecomposable S#G)-module and W is an irreducible S*B-
module, then we will say that the ring S*G is of OTP representation type.
Let € be a subgroup of S*. We say that a group G = G, x B is of OTP
projective (S,€))-representation type if there exists a cocycle A € Z2(G,Q)
such that the ring S*G is of OTP representation type. A group G = G, x B
is defined to be of purely OTP projective (S, )-representation type if S*G is
of OTP representation type for any A € Z2(G, Q). If Q = S*, then instead of
“(S,Q)-representation type” we write “S-representation type”.
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In Section 3, we characterize twisted group rings of OTP representation
type. Let G = Gp x B, u € Z*(G,,S*), v € Z*(B,S*), A = p X v and
H = Ker(u). In Theorem 1, we prove that if || > 2, then the ring S*G is of
OTP representation type if and only if F'is a splitting field for the F-algebra
SYB/XS”B. Assume that |G)| # 2, p € Z*(Gp, F*), v € Z*(B,S*) and
A\ = u x v. In Proposition 3, we show that S*G is of OTP representation type
if and only if one of the following conditions is satisfied:

(i) FFG, is a field;

(i) p=2, |G4H| =1 and 2dimp(FFGy/rad FFG2) = |Gal;

(iii) F' is a splitting field for the F-algebra SYB/XS"B.

In Section 4, we study the groups of OTP projective representation type.
Let G = G x B, |G}| # 2 and s be the number of invariants of G,/G),. In
Theorem 2, we prove that G is of OTP projective (S, F*)-representation type
if and only if one of the following conditions is satisfied:

(i) 1G] = 1 and s < i(F);

i) p =2, |Gy =1, s = i(F) + 1 and Gy has at least one invariant
equal to 2;

(iii) F is a splitting field for F° B for some o € Z%(B, F*).

Let G = G, x B be an Abelian group and s the number of invariants of G,. In
Proposition 5, we establish that G is of OTP projective (S, F*)-representation
type if and only if one of the following conditions is satisfied:

(i) s <i(F);

(ii) p=2, s =i(F) + 1 and G has at least one invariant equal to 2;

(iii) B has a subgroup H such that B/H is of symmetric type and F
contains a primitive m'® root of 1, where m = max{exp(B/H),exp H}.

In Section 5, we show in Theorem 3 that G = G|, x B is of purely OTP
projective S-representation type if and only if |Gp| = 2 or F' is a splitting field
for any F¥B. Corollary to Theorem 3 asserts that if G is a nilpotent group,
then G is of purely OTP projective S-representation type if and only if one of
the following conditions is satisfied:

(i) 1Gyl = 2

(ii) F = F9 and F contains a primitive ¢'" root of 1 for every prime q | | B|.

2. Preliminaries

Throughout this paper, we use the following notations: p > 2 is a prime;
F is a field of characteristic p > 0; S = F[[X]] is the ring of formal power
series in the indeterminate X with coefficients in the field F'; P = XS is unique
maximal ideal of S; F* is the multiplicative group of F; F?1 = {a?: a € F};
S* is the unit group of S; G = G, x B is a finite group, where G, is a p-group
and B is a p/-group; H’ is the commutant of a group H, e is the identity
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element of H, |h| is the order of h € H; soc A is the socle of an Abelian
group A and exp A is the exponent of A. We suppose that |G,| > 1 and
|B| > 1. Given a subgroup 2 of S*, we denote by Z2(H, ) the group of all
Q-valued normalized 2-cocycles of the group H, where we assume that H acts
trivially on Q. An S-basis {uy: h € H} of S*H satisfying uqu, = Aa,bUab
for all a,b € H is called natural (corresponding to A € Z?(H, S*)). Given an
S*H-module V, we write Endga (V) for the ring of all S* H-endomorphisms
of V, rad Endgx (V) for the Jacobson radical of Endgx (V) and Endgx g (V)
for the quotient ring

EndskH(V)/ rad Ends)\H(V).

Moreover, we denote by SAH the F-algebra S*H /X S*H and by V the factor
module V/XV. Given A\ € Z2(H, F*), FAH denotes the twisted group algebra
of H over F and FAH the quotient algebra of FA*H by the radical rad F*H.
We identify an element a+ P, a € F, of the field S = S/P with the element a.

Lemma 1. [8, p.125] Let H be a finite group, A € Z*(H,S*) and V an S H-
module. Then V is indecomposable if and only if Endgx (V') is a skewfield.

Lemma 2. Let H be a finite p-group, D a subgroup of H, X\ € Z*(H,S*) and
M an indecomposable S*D-module. Assume that Endgp (M) is isomorphic
to a field K, K D F and one of the following conditions is satisfied:

(i) H is Abelian;

(i1) [s(K) : F] is not divisible by p, where s(K) is the separable closure of
Fin K.
Then M := SAH ®@gxpy M is an indecomposable S*H-module and

Ends)\H(MH)

1s isomorphic to a field that is a finite purely inseparable extension of the

field K.

The proof is similar to that of Lemma 2.2 [2, p.540]. It uses the same idea as
in Theorem 8 of [9].

Lemma 3. Let K be a finite separable extension of the field F' and H a finite
p-group. If |H| > 2, then there exists an indecomposable SH-module V' such
that Endgg (V') is isomorphic to K.

Proof. Let K = F(#), f(t) be the monic minimal polynomial of 6 over F'
and I" the companion matrix of f(t). Assume that either H is cyclic of order
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|H| > 2 or H is a group of type (2,2). Let H = (a) and V be the underlying
S H-module of the representation

E XE T
a— 0 F XEFE
0 O E

of H, where E is the identity matrix of order n = deg f(¢f). Then,
by [13, pp. 70-71], Endgy (V) = K. If H = (a) x (b) is a group of type
(2,2), then as V' we take the underlying SH-module of the representation

. F FE b E T
¢ 0 E ) 0 E )
By [13, p. 71], we have Endgy (V) = K. O

Lemma 4. Let p =2, [F : F?] =2, H be a 2-group such that |H| # 8 and
|H'| = 2. Assume also that K is a finite separable extension of the field F' and
[K : F)] is not divisible by 2. Then, for any A\ € Z*(H, F*), there exists an
indecomposable S* H-module V' such that Endga g (V) is isomorphic to a field
that is a finite purely inseparable extension of the field K.

Proof. Let H = (¢), s be the number of invariants of the Abelian group
H/H', D the subgroup of H such that H € D and D/H' = soc(H/H'). We
have -

S2D/S*D(ue — ue) = S*D,
where D = D/H’ and S\xH/,yH/ = Mgy for all z,y € D. Assume s > 2. Since
i(F) =1, . .

FAD = F)\Dl ®FFD2,

where D = D1 x Dy and |Dy| > 4. It follows that S*D = $*D; ®@g SDs. By
Lemmas 2 and 3, there exists an indecomposable S* D-module V such that

EndS;D(V)

is a finite purely inseparable extension of the field K. The module V is also
an S*D-module. In view of Lemma 2, V¥ is an indecomposable S* H-module

and
EndS/\H (VH)

is a finite purely inseparable extension of K.
Now we consider the case s = 2. Since |H| > 8, then D is Abelian. Let
D = (a)x (b), where a> = ¢ and b* = e. Then

SAD = @ Suéu{)u?,
0,5,k
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where

2 2 2
Uy = QUe, Uy = PUe, U, = Ue

and o, 3 € F*. If a € F?, then S[u,] is the group ring of the group (a ) over the
ring S. If B € F? then S*D contains the group ring SQ, where Q = (c) x (b).
Assume that o ¢ F? and 8 ¢ F2. Since i(F) = 1, a~! = 6% + 623 for some
80,01 € F. Let v = uy(Soue + 61up). Then v? = au, - o tue = ue.

If D= (a)x(b)x(c)is of type (2,2,2), then S*D contains SQ, where
Q@ is a group of type (2,2).

Applying Lemmas 2 and 3, we finish the proof. 0

Lemma 5. Let G = G, x B and A\ € Z*(G,S*). The ring S*G is of OTP
representation type if and only if the outer tensor product of any indecom-
posable SAGp—module and any irreducible S*B-module is an indecomposable

SAG-module.

The proof is similar to that of the corresponding fact for a group ring
(see [6, p. 41], |13, p. 68]).

Let B be a finite p’-group and A € Z2(B,S*). We denote by S*B the
F-algebra S*B/XS*B. For y € S*B, let § denote y + X S*B. The F-algebra

SAB is separable. By Theorem 6.8 [8, p. 124], if
%:%51@...@%%
is a decomposition into minimal left ideals, then there exists a decomposition

S*B = S*Be; & ...® S*Be,,
where ¢; is an idempotent of SAB, e; is an idempotent of SAB and ¢ = ¢
for every i € {1,... ,n}. Each ideal S*Be; is an irreducible S*B-module.
By Theorem 76.8 [7, p. 532] and Corollary 76.15 [7, p. 536], any irreducible
SAB-module is isomorphic to S’\Bej for some j € {1,... ,n}. Moreover, by
Proposition 5.22 [8, p. 112| and Theorem 76.8 [7, p. 532],

Endgrj 5*Be; = Endgap 5 Be;/X Endga §*Bej & End 5, S*Be;.

Lemma 6. Let G = G, x B and X\ € Z*(G,S*). If V is an indecomposable
SAGp—module and W is an irreducible S* B-module, then

EndsAG(V#W) = Ends)\Gp(V) ®F EndsAB(W).
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P r o o f. By Proposition 7.6 [14, p. 652],
EndsAG(V#W) = Ends)\Gp(V) ®S Ends)\B(W).

Applying Proposition 2 |6, p. 39], we obtain

Endgrg (VAW) = (EndSAGP(V) ®F EndSAB(W)) /R,

where R := rad (EndsAG(V) QF Ends)\B(W)). Since Endgxg(W) is a sepa-
rable F'-algebra, then

Ends)\GP(V) ®F Endst(W)
is a semisimple algebra. Hence R = 0 and the result follows. U

Lemma 7. Let G = G, x B and X\ € Z*(G,S*). If F is a splitting field for
the algebra SAB, then S*G is of OTP representation type.

Proof Let W be an irreducible S* B-module. Then

EndsABWgEHdSTXJBWgF,

where W = W/XW. By Lemmas 1 and 6, V#W is an indecomposable S*G-
module for every indecomposable S’\Gp—module V. By Lemma 5, S*G is of
OTP representation type. O

Lemma 8. Let B be a finite p'-group. Assume that F' contains a primitive ¢*"
root of 1 for every prime q | |B| such that p | (¢—1). Then, for any F-algebra

SAB, there exists a splitting field K such that [K : F] is not divisible by p.
Proof. See|[2, p. 548|. O

Proposition 1. Let S = F[[X]], T be the quotient field of S, B a finite p'-
group and \ € Z*(B,S*). The field T is a splitting field for the algebra T*B

if and only if F is a splitting field for the F-algebra S*B.

Proof Assume that T is a splitting field for T*B. Denote by W an
irreducible S*B-module. Since T ®g W is an absolutely irreducible T*B-
module, by Schur’s Lemma, Endgg(W) = S. It follows that

End 5, (W) = F. (1)

Hence F' is a splitting field for SAB.
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Now suppose that F is a splitting field for S*B = S*B/XS*B. Then
there exists an isomorphism (1) for any irreducible S*B-module W. It fol-
lows, by Theorem 76.8 [7, p. 532] and Corollary 76.16 [7, p. 536|, that
Endgrg(W) = S, therefore Endpap(T ®¢ W) = T. Hence T is a splitting
field for 77 B. O

3. Twisted group rings of OTP representation type

In this Section, S = F[[X]] and G = G, x B, where G, is a Sylow p-subgroup
of G, |Gp| # 1 and |B| # 1. We assume that if G, is non-Abelian, then F
contains a primitive ¢*" root of 1 for every prime ¢ | |B| such that p | (g — 1).

Theorem 1. Let G = G, x B, p € Z*(G,,S*), v € Z*(B,S*), A = pxv and
H = Ker(u). Assume that |H| > 2. The ring S*G is of OTP representation
type if and only if F' is a splitting field for S B.

P roof. If Fis a splitting field for %, then, by Lemma 7, the ring S*G is
of OTP representation type.

Assume now that F is not a splitting field for SYB. There exists an irre-
ducible S¥ B-module W such that D := Endgg(W) is a division F-algebra
of dimension greater than one. By [4, p. 268]|, the restriction of u to H x H
is a coboundary and G;, C H. Suppose that G}, is non-Abelian. Then, by

Lemma 8, there exists a splitting field K for S¥ B, which is a finite separable
extension of the field F' and satisfies [K : F'| # O(mod p). In view of Lemma 3,
there is an indecomposable S H-module M such that Endgg (M) is isomorphic
to K. According to Lemma 2, we conclude that M is an indecomposable
SHGp-module and

Endsug, (MGP )

is isomorphic to a field L that is a finite purely inseparable extension of the
field K. Since L is a splitting field for D, L®g D is not a skewfield. Hence, by
Lemmas 1 and 6, M #W is not an indecomposable S*G-module. In view
of Lemma 5, S*G is not of OTP representation type.

The case, when G, is Abelian, is treated similarly. O

Corollary. [2, p. 553] Let G = Gy x B, |G}| > 2 and \ € Z%(G, 8%).
The m’ngé’iG is of OTP representation type if and only if F is a splitting
field for SAB.

Proof. Let ube the restriction of A to G}, x G. Since G}, C Ker(u), we
have | Ker(u)| > 2. Next apply Theorem 1. O
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Proposition 2. Let B be a nilpotent p'-group.

(i) If the field F does not contain a primitive ¢ root of 1 for some prime
q | |B|, then F is not a splitting field for each algebra F*B.

(i) The field F is a splitting field for all twisted group algebras FAB if
and only if F = F9 and F contains a primitive ¢"" root of 1 for every prime
q||B|.

Proof. (i) Assume that F does not contain a primitive ¢*" root of 1 for some
prime ¢ | |B|. The center of a Sylow g-subgroup B, of B contains an element b
of order q. If {u,: g € B} is a natural F-basis of the algebra F* B, then u; lies
in the center of F*B. Let ug = Yue, ¥ € F*, and let F' be a splitting field for
the algebra FAB. Denote by f1,... , fm acomplete system of minimal pairwise
orthogonal central idempotents of F*B. We have uy = Bifi + ... + Bfm,
where 3; € F for any j € {1,... ,m}. Then v = ﬂ? for every j. It follows
that 01 = ... = B, hence u, = B1u.. This contradiction proves that F' is not
a splitting field for the algebra FB.

(ii) Suppose that F' is a splitting field for F*B for each A € Z2?(B, F*).
Then every irreducible projective F-representation of the group B is abso-
lutely irreducible. Let ¢ be a prime divisor of |B|. There exists a normal
subgroup D of B such that |B/D| = q. Denote by 7: B — B/D the canoni-
cal group homomorphism and by V a finite-dimensional vector space over F.
If I': B/D — GL(V) is an irreducible projective F-representation of B/D on
V, then I' := ' o 7 is an irreducible projective F-representation of B on the
space V and D C Ker(I'). Assume that B/D = (bD) and ['(bD)? = ~idy,
v € F*. Since every I is absolutely irreducible, v € F? and F contains
a primitive ¢*" root of 1.

Assume now that the field F' contains a primitive ¢*" root of 1 and F = F¢
for each prime ¢ | |B|. Let A € Z?(B, F*). Then FAB = F*B, where M‘afy‘ =1
for all z,y € B. There exists an F-algebra homomorphism of FH onto F*B,
where H is a central extension of a cyclic group of order |B| by the group B.
Since F contains a primitive |H|[" root of 1, by Corollary 70.24 [7, p. 475],
F is a splitting field for FH. Hence, F is a splitting field for F*B for each
A\ € Z%(B, F*). d

Proposition 3. Let G = G, x B, |G| # 2, p € Z*(Gy, F*), v € Z*(B,5*)
and A = pxv. The ring S*G is of OTP representation type if and only if one
of the following conditions is satisfied:

(i) F*G,, is a field;

(ii) p =2, |G| = 1 and 2dimp FrGy = |Gsl;

(13i) F is a splitting field for the F-algebra SvB.
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Proof. If |G}| > 2 then, by Corollary to Theorem 1, the ring SAG is of OTP

representation type if and only if F is a splitting field for SVB. Let Gyl =1
and K = FFG,. If K is a field, then S*G), = K[[X]] is a principal ideal ring.
Every indecomposable S*Gj,-module is isomorphic to S#G,. We have

EndSuGP(S“Gp) = S“GP/XS“GP 2 K.

The field K is a finite purely inseparable extension of F'. Let W be an irre-
ducible S”B-module and D := Endgvp(W). Then D = Endg4(W). Since
S¥ B is a separable algebra, the center of the division F-algebra D is a sepa-
rable extension of F' [7, p. 485]. The index of D is not divisible by p [16]. It
follows that K ®p D is a skewfield. Applying Lemmas 1 and 6, we conclude
that SHGp#W is an indecomposable SAG-module. Hence, by Lemma 5, S*G
is of OTP representation type.

Assume that p > 2 and K is not a field. Let H be the socle of G},. We have
FFH = FPHy ®p FHy, where |Hy| > p. It follows that SPH = SFH; ®g S Ho.
By Lemmas 2 and 3, for any finite separable extension L of the field F, there
exists an indecomposable S*G)-module V' such that Endgug,(V) is a finite
purely inseparable extension of L. Arguing as in the proof of Theorem 1, we
conclude that S*G is of OTP representation type if and only if F' is a splitting
field for the algebra S¥B.

Suppose that p = 2 and K is not a field. If 4dimp FFGy < |G2| then, as in
the case p > 2, we prove that S*G is of - OTP representation type if and only
if F'is a splitting field for the algebra S¥B. If 2dimp FFrGy = |Gs| then, by
Theorem 4.2 [2, p. 552], the ring S*G is of OTP representation type. O

Corollary. Let Gy be an Abelian p-group, B a nilpotent p'-group, G = Gpx B,
e Z4Gy, F*), v € Z*(B,S*) and A = p x v. Assume that the field F does
not contain a primitive ¢™ root of 1 for some prime q | |B|. The ring S*G
is of OTP representation type if and only if one of the following conditions is
satisfied:

(i) F*G) is a field;

(1) p =2 and 2dimp FrGy = |Ga|.
P r o o f. Apply Propositions 2 and 3. 0
Proposition 4. Letp =2, G = Gy x B, up € Z*(Gy, F*), v € Z*(B,S*) and
A= uxv. Assume that |Go| # 8, |G4| =2 and [F : F?] < 2. Then S*G is of
OTP representation type if and only if F' is a splitting field for SvB.

Proof. If Fis a perfect field, then p is a coboundary [15, p. 43]. In this
case SFGo is the group ring SGo. Since |Ga| > 8, by Theorem 1, SG is of
OTP representation type if and only if F' is a splitting field for S¥B. Assume
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now that [F : F?] = 2. Arguing as in the proof of Theorem 1, we deduce, by
Lemmas 1, 4, 5, 6 and 7, tklgt/S’\G is of OTP representation type if and only
if F'is a splitting field for S¥B. U

4. Groups of OTP projective representation type

We recall from [3, p. 200] that i(F) is the supremum of the set that consists
of 0 and all positive integers m such that an F-algebra of the form

F[t]/(t* — 1) ®F ... ®p F[t]/(tP — o)
is a field for some ay,... , o, € K.

Theorem 2. Let G = Gy, x B, |G},| # 2 and s be the number of invariants of
Gp/G,. The group G is of OTP projective (S, F*)-representation type if and
only if one of the following conditions is satisfied:

(i) |Gl = 1 and s < i(F);

(i) p = 2, |Gy =1, s = i(F) + 1 and G2 has at least one invariant
equal to 2;

(iii) F is a splitting field for F° B for some o € Z*(B, F*).

Proof. Let p=2and G2 be Abelian. If s > i(F') 4 2, then 4dimp FAGsy <
|Go| for any A € Z2(Gy, F*). In this case, by Proposition 3, G is of OTP pro-
jective (S, F™*)-representation type if and only if the condition (iii) is satisfied.
Assume that s = i(F) + 1. If G2 has at least one invariant equal to 2, then
there exists a cocycle A € Z2(Gy, F*) such that 2dimp FAGy = |Gy|. Hence,
by Proposition 3, G is of OTP projective (S, F*)-representation type. Sup-
pose that every invariant of G5 is greater than 2. Then 4dimp FAGy < |Ga]
for each A € Z2(Gy, F*). By Proposition 3, G is of OTP projective (S, F*)-
representation type if and only if the condition (iii) is satisfied.

Let p > 2 and G, be Abelian. There exists a cocycle u € Z%(Gp, F*) such
that F*G),, is a field if and only if s < i(F). For any v € Z*(B, F*), we have
SYB~ FVB. Applying Proposition 3, we finish the proof. O

Corollary. Let G), be an Abelian p-group, s the number of invariants of G,
B a nilpotent p'-group and G = G, x B. Assume that the field F does not
contain a primitive ¢™ root of 1 for some prime q | |B|. The group G is of
OTP projective (S, F*)-representation type if and only if one of the following
conditions is satisfied:

(i) s < i(F);

(i) p=2, s=1i(F)+ 1 and G2 has at least one invariant equal to 2.

P r oo f. Apply Proposition 2 and Theorem 2. d
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Lemma 9. Let B be an Abelian p'-group. The field F is a splitting field for
some algebra F*B if and only if B has a subgroup H such that B/ H is of sym-
metric type and F contains a primitive m™ root of 1, where
m = max{exp(B/H),exp H}.

Proof. Let A € Z%(B,F*), {uy: b € B} be a natural F-basis of the algebra
F?B, Z the center of F*B and H = {g € B: ug € Z}. Then H is a subgroup
of B and Z = FAH. The algebra F*B may be viewed as a twisted group ring
of the group B := B/H over the ring Z. By Lemma 3 [1, p. 785|,

FAB=27"B~7\N, @y ... 25 Z'N,,
where N; is a group of type (¢, ¢}""), ¢; is a prime divisor of |B| and ZAN; is

a central Z-algebra, moreover
Yoy = Azy Ay s €F

y7
and s
’Ygfy =1
for all -,y € N;. Tt follows that I contains a primitive (exp B)™ root of 1.

If F is a splitting field for F*B, then F is a splitting field for the commu-
tative F-algebra Z = FAH. Therefore F contains a primitive (exp H)™ root
of 1. The group B = Nj x ... x N, is of symmetric type. This proves the
necessity.

Let us prove the sufficiency. Denote by K a finite subfield of the field F
which contains a primitive m* root of 1, where m = max{exp(B/H),exp H}.
We may assume that B is an Abelian ¢-group, where ¢ # p. Let

B:=B/H = (2 H)x (y1H)x...x (x,H)x {(y,H),

where |z;H| = |y;H| = ¢™ for each i € {1,... ,7}. We have

n;

o =hi, oyl =0,
where h;, hi € H. Let Z = KH with K-basis {u,: h € H} and let A = Z"B
be the twisted group ring of B over Z with Z-basis {vyg: b € B} satisfying
the following conditions:

1) if bH = (w1 H)" (yy H)' ... (2, H)" (y.H)’r, where 0 < is, js < ¢", then

_ 0 jl ir j?” .
VpH — vlevylH PN v:er’UyrH’

qns qs .

2) Uy, = Uhy, Uy, pr = Uhz forall s € {1,... ,r};
o g1 Jrir 1441, J1471 irtir ) Jrtir
3) UpH ’UbH_gl 57» leH vylH "'vxTH UyrH s
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where &, is a primitive (¢™)™ root of 1 for every s € {1,... ,r}. Then
A2 ZENI Qg ... Ry ZMN,,

where Z# N is a central twisted group ring of the group Ny = (xsH ) X (ysH )
over the ring Z.
Let g be an element of the group B. Then

di,t dy,t
g=2x{"y" ...y h,

where 0 < d, ts < ¢"* for every s € {1,... ,r} and h € H. We set

di ot dr . tr
Wg =V gUy g - - - Vgt gy prUh-
Then {w,: g € B} is a K-basis of the algebra A and wg,wg, = Ag; goWggs,
where Ay, 4, € K* for all g1,90 € B. Hence A = K*B and K is a splitting
field for the algebra K*B. It follows that F' is a splitting field for the algebra
FAB=F @k K*B. O

Lemma 10. Let B be an Abelian p'-group of symmetric type and exp B =
. .q, where qq, ..., q are pairwise distinct prime numbers. The field F
is a splitting field for certain algebra FAB if and only if F' contains a primitive
n™ root of 1, where n = qlfl . ..qft and 2k; > mj for every j € {1,... ,t}.

P r o o f. Without loss of generality, we may assume that B is an Abelian
g-group of exponent ¢™. Let F contain a primitive (¢')*" root of 1 and F does
not contain a primitive (¢!*)"™ root of 1. If I > m then F is a splitting field
for the group algebra FB. Let 5 <1 < m. The group B has a subgroup H
of exponent ¢! such that B/H is of symmetric type and exp(B/H) = ¢'.
Since m — [ < [, by Lemma 9, F' is a splitting field for certain algebra F*B.
Suppose now that [ < . Let A € Z%(B, F*), Z be the center of FAB and H
a subgroup of B such that Z = F*H. Then exp H > ¢™ . If F is a splitting
field for F B, then exp H < ¢*. We have ¢™ ! < ¢, whence m — 1 < .
Hence [ > 7. This contradiction shows that F'is not a splitting field for every
algebra [ B. O

Proposition 5. Let G = G, x B be an Abelian group and s the number of
invariants of G,. The group G is of OTP projective (S, F*)-representation
type if and only if one of the following conditions is satisfied:

(i) s <i(F);

(i) p=2, s=1i(F)+ 1 and G2 has at least one invariant equal to 2;

(i1i) B has a subgroup H such that B/H is of symmetric type and F con-
tains a primitive m™ root of 1, where m = max{exp(B/H),exp H}.

P r oo f. Apply Theorem 2 and Lemma 9. 0
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Proposition 6. Let G = G, x B be an Abelian group and s the number of in-
variants of Gp. Assume that B is of symmetric type and exp B = ¢i" ... ¢/,
where q1, ... ,q¢ are pairwise distinct prime numbers. The group G is of OTP
projective (S, F*)-representation type if and only if one of the following con-
ditions is satisfied:

(i) s <i(F);

(1)) p=2, s =1i(F)+ 1 and G2 has at least one invariant equal to 2;

(iii) F contains a primitive n'™ root of 1, where n = qlfl ... qfi and
2k; > my; for each j € {1,... ,t}.
P r oo f. Apply Theorem 2 and Lemma 10. 0

5. Groups of purely OTP projective representation type

Lemma 11. [5, p. 322| Let R be a Noetherian integral domain whose integral
closure is a finitely generated R-module. Then every finitely generated torsion
free R-module is a direct sum of ideals in R if and only if each ideal in R is
generated by one or two elements.

Theorem 3. Let G = G, x B. The group G is of purely OTP projective
S-representation type if and only if |G,| =2 or F is a splitting field for F¥B
for any v € Z*(B, F*).

P roof Assume that |G,| > 2 and 0 € Z?(B,S*). By Theorem 1, the
ring S*G = SGp ®s 5B is of OTP representation type if and only if F' is
a splitting field for S°B. Hence, by Lemma 7, if |G| > 2 then G is of purely
OTP projective S-representation type if and only if F' is a splitting field for
every algebra F"B.

Let p = 2 and Gy = (a) be the group of order 2. If V' is an indecomposable
SGo-module then, by [13, p. 70|, Endgg, (V) = F. Hence, by Lemmas 1, 5 and
6, the ring SG ®g S” B is of OTP representation type for any v € Z2(B, S*).
Suppose now that A € Z%(G,S*) and S*G; is not a group ring. Then
S*Gy = Sue + Sug, where u2 = f(X)ue, f(X) € S* and f(X) ¢ S2. Let
f(X) =ao+ a1 X + a2 X?+ ..., where a; € F for every j € {0,1,2,...},
6 be a root of the polynomial ¢ — f(X) and K = T(#), where T is the quo-
tient field of S. We have S*Go = S[f]. Denote by L the integral closure of
S[0] in the field K. Then L = S[w], where w = 6 or w = X "(by + 1 X +
cooF b1 X" 4 0), moreover in the second case

FX) =05+ b1X7 + . 400 X200 4% " X,
j>2n

n>1, as, € F? or ag, 1 #0.
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Every ideal of the ring S[f] is generated by one or two elements. Let V
be an indecomposable S[f]-module. If z € S[f], v € V and zv = 0, then
2%y = 0. Since 22 € S and V is a free S-module, 22 = 0 or v = 0. Hence z =0
or v = 0. This means that V is a torsion-free S[f]-module. By Lemma 11,
V' is isomorphic to an ideal J of the ring S[f]. The ideal J is a free S-
module of rank 2. It follows that T ®g J is an indecomposable T*G5-module.
By Theorem 3.1 [2, p. 549], the algebra TG is of OTP representation
type. Therefore, (T ®g J)#(T ®g W) is an indecomposable T*G-module for
any irreducible S*B-module W. It follows that J#W is an indecomposable
SAG-module. By Lemma 5, the ring S*G is of OTP representation type.
Hence, G is of purely OTP projective S-representation type. O

Corollary. Let G = G, x B be a nilpotent group. The group G is of purely
OTP projective S-representation type if and only if one of the following con-
ditions is satisfied:

(ii) F = F9 and F contains a primitive ¢ root of 1 for each prime q | |B|.

P r o o f. Apply Proposition 2 and Theorem 3. O

Proposition 7. Let G = G, x B. Assume that F' = F? and F contains
a primitive ¢"* root of 1 for each prime q | |B|. Then G is of purely OTP
projective S-representation type.

P r o o f. The field F is a splitting field for any algebra F”B. Hence, by
Lemma 7, S*G is of OTP representation type for every \ € Z%(G, S*). O

Corollary. If I is a separably closed field, then every group G = G, x B is
of purely OTP projective S-representation type.
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