INDECOMPOSABLE PROJECTIVE REPRESENTATIONS OF DIRECT PRODUCTS OF FINITE GROUPS OVER A RING OF FORMAL POWER SERIES

Leonid F. Barannyk, Dariusz Klein

Institute of Mathematics Pomeranian University of Słupsk Arciszewskiego 22b, 76-200 Słupsk, Poland e-mail: barannyk@apsl.edu.pl, klein@apsl.edu.pl

Abstract. Let F be a field of characteristic p > 0, S = F[[X]] the ring of formal power series in the indeterminate X with coefficients in the field F, F^* the multiplicative group of F, $G = G_p \times B$ a finite group, where G_p is a p-group and B is a p'-group. We give necessary and sufficient conditions for G and F under which there exists a cocycle $\lambda \in Z^2(G, F^*)$ such that every indecomposable projective S-representation of G with the cocycle λ is the outer tensor product of an indecomposable projective S-representation of G_p and an irreducible projective S-representation of B.

1. Introduction

Let F be a field of characteristic p > 0 and $G = G_p \times B$, where G_p is a Sylow p-subgroup. Blau [6] and Gudyvok [10, 11] proved that every finitely generated FG-module is the outer tensor product V # W of an indecomposable FG_p -module V and an irreducible FB-module W if and only if either G_p is cyclic or F is a splitting field for B. Gudyvok [12, 13] also investigated a similar problem for group rings KG, where K is a complete discrete valuation ring. In particular, he proved that if K is of characteristic p > 0 and T is the quotient field of K, then every indecomposable KG-module is of the form V # W if and only if either $|G_p| = 2$ or T is a splitting field for B. In the paper [2], the results of Blau and Gudyvok were generalized to the twisted group rings $S^{\lambda}G$, where $G = G_p \times B$, S = F or S is a complete discrete valuation ring of characteristic p > 0.

In this paper we continue the study of indecomposable projective representations of $G = G_p \times B$ over the ring S = F[[X]] as begun in [2].

Let us present the main results of the paper. We assume that F is a field of characteristic p > 0, S^* the unit group of S, $|G_p| \neq 1$, $|B| \neq 1$, and if G_p is non-Abelian, then F contains a primitive q^{th} root of 1 for every prime $q \mid |B|$ such that $p \mid (q-1)$. Given a cocycle $\lambda: G \times G \to S^*$ in $Z^2(G, S^*)$, we denote by $S^{\lambda}G$ the twisted group ring of the group G over the ring S with the 2-cocycle λ . By an $S^{\lambda}G$ -module we mean a finitely generated left $S^{\lambda}G$ -module which is S-free. Given $\mu \in Z^2(G_p, S^*)$, the kernel $\operatorname{Ker}(\mu)$ of μ is the union of all cyclic subgroups $\langle g \rangle$ of G_p such that the restriction of μ to $\langle g \rangle \times \langle g \rangle$ is a coboundary. We recall from [4, p. 268] that $G'_p \subset \text{Ker}(\mu)$, $\text{Ker}(\mu)$ is a normal subgroup of G_p and the restriction of μ to $\operatorname{Ker}(\mu) \times \operatorname{Ker}(\mu)$ is a coboundary (see also [3, p. 197] for a simple proof). Up to cohomology in $Z^2(G_p, S^*)$, we have $\mu_{g,a} = \mu_{a,g} = 1$ for all $g \in G_p$ and $a \in \text{Ker}(\mu)$. In what follows, we assume that every cocycle $\mu \in Z^2(G_p, S^*)$ under consideration satisfies this condition. If H is a subgroup of G, then the restriction of $\lambda \in Z^2(G, S^*)$ to $H \times H$ will also be denoted by λ . In this case, $S^{\lambda}H$ is a subring of $S^{\lambda}G$. A group G is of symmetric type if it decomposes into a direct product of two isomorphic groups. Denote

$$i(F) = \begin{cases} t & \text{if } [F:F^p] = p^t, \\ \infty & \text{if } [F:F^p] = \infty \end{cases}$$

Let $G = G_p \times B$, $\mu \in Z^2(G_p, S^*)$ and $\nu \in Z^2(B, S^*)$. Then the map $\mu \times \nu \colon G \times G \to S^*$ defined by

$$(\mu \times \nu)_{x_1b_1, x_2b_2} = \mu_{x_1, x_2} \cdot \nu_{b_1, b_2}$$

for all $x_1, x_2 \in G_p$, $b_1, b_2 \in B$ belongs to $Z^2(G, S^*)$. Every cocycle $\lambda \in Z^2(G, S^*)$ is cohomologous to $\mu \times \nu$, where μ is the restriction of λ to $G_p \times G_p$ and ν is the restriction of λ to $B \times B$. From now on, we suppose that each cocycle $\lambda \in Z^2(G, S^*)$ under consideration satisfies the condition $\lambda = \mu \times \nu$.

For any $\lambda = \mu \times \nu \in Z^2(G, S^*)$, we have $S^{\lambda}G \cong S^{\mu}G_p \otimes_S S^{\nu}B$. If every indecomposable $S^{\lambda}G$ -module is isomorphic to the outer tensor product V # W, where V is an indecomposable $S^{\mu}G_p$ -module and W is an irreducible $S^{\nu}B$ module, then we will say that the ring $S^{\lambda}G$ is of OTP representation type.

Let Ω be a subgroup of S^* . We say that a group $G = G_p \times B$ is of OTP projective (S, Ω) -representation type if there exists a cocycle $\lambda \in Z^2(G, \Omega)$ such that the ring $S^{\lambda}G$ is of OTP representation type. A group $G = G_p \times B$ is defined to be of purely OTP projective (S, Ω) -representation type if $S^{\lambda}G$ is of OTP representation type for any $\lambda \in Z^2(G, \Omega)$. If $\Omega = S^*$, then instead of " (S, Ω) -representation type" we write "S-representation type". In Section 3, we characterize twisted group rings of OTP representation type. Let $G = G_p \times B$, $\mu \in Z^2(G_p, S^*)$, $\nu \in Z^2(B, S^*)$, $\lambda = \mu \times \nu$ and $H = \operatorname{Ker}(\mu)$. In Theorem 1, we prove that if |H| > 2, then the ring $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for the F-algebra $S^{\nu}B/XS^{\nu}B$. Assume that $|G'_p| \neq 2$, $\mu \in Z^2(G_p, F^*)$, $\nu \in Z^2(B, S^*)$ and $\lambda = \mu \times \nu$. In Proposition 3, we show that $S^{\lambda}G$ is of OTP representation type if and only if one of the following conditions is satisfied:

(i) $F^{\mu}G_{p}$ is a field;

(ii) p = 2, $|G'_2| = 1$ and $2 \dim_F(F^{\mu}G_2/\operatorname{rad} F^{\mu}G_2) = |G_2|$;

(iii) F is a splitting field for the F-algebra $S^{\nu}B/XS^{\nu}B$.

In Section 4, we study the groups of OTP projective representation type. Let $G = G_p \times B$, $|G'_p| \neq 2$ and s be the number of invariants of G_p/G'_p . In Theorem 2, we prove that G is of OTP projective (S, F^*) -representation type if and only if one of the following conditions is satisfied:

(i) $|G'_n| = 1$ and $s \leq i(F)$;

(ii) p = 2, $|G'_2| = 1$, s = i(F) + 1 and G_2 has at least one invariant equal to 2;

(iii) F is a splitting field for $F^{\sigma}B$ for some $\sigma \in Z^2(B, F^*)$.

Let $G = G_p \times B$ be an Abelian group and s the number of invariants of G_p . In Proposition 5, we establish that G is of OTP projective (S, F^*) -representation type if and only if one of the following conditions is satisfied:

(i) $s \leq i(F)$;

(ii) p = 2, s = i(F) + 1 and G_2 has at least one invariant equal to 2;

(iii) B has a subgroup H such that B/H is of symmetric type and F contains a primitive m^{th} root of 1, where $m = \max\{\exp(B/H), \exp H\}$.

In Section 5, we show in Theorem 3 that $G = G_p \times B$ is of purely OTP projective S-representation type if and only if $|G_p| = 2$ or F is a splitting field for any $F^{\nu}B$. Corollary to Theorem 3 asserts that if G is a nilpotent group, then G is of purely OTP projective S-representation type if and only if one of the following conditions is satisfied:

(i) $|G_p| = 2;$

(ii) $F = F^q$ and F contains a primitive q^{th} root of 1 for every prime $q \mid |B|$.

2. Preliminaries

Throughout this paper, we use the following notations: $p \ge 2$ is a prime; F is a field of characteristic p > 0; S = F[[X]] is the ring of formal power series in the indeterminate X with coefficients in the field F; P = XS is unique maximal ideal of S; F^* is the multiplicative group of F; $F^q = \{\alpha^q : \alpha \in F\}$; S^* is the unit group of S; $G = G_p \times B$ is a finite group, where G_p is a p-group and B is a p'-group; H' is the commutant of a group H, e is the identity element of H, |h| is the order of $h \in H$; soc A is the socle of an Abelian group A and $\exp A$ is the exponent of A. We suppose that $|G_p| > 1$ and |B| > 1. Given a subgroup Ω of S^* , we denote by $Z^2(H, \Omega)$ the group of all Ω -valued normalized 2-cocycles of the group H, where we assume that H acts trivially on Ω . An S-basis $\{u_h : h \in H\}$ of $S^{\lambda}H$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in H$ is called natural (corresponding to $\lambda \in Z^2(H, S^*)$). Given an $S^{\lambda}H$ -module V, we write $\operatorname{End}_{S^{\lambda}H}(V)$ for the ring of all $S^{\lambda}H$ -endomorphisms of V, rad $\operatorname{End}_{S^{\lambda}H}(V)$ for the Jacobson radical of $\operatorname{End}_{S^{\lambda}H}(V)$ and $\overline{\operatorname{End}_{S^{\lambda}H}(V)}$ for the quotient ring

$$\operatorname{End}_{S^{\lambda}H}(V)/\operatorname{rad}\operatorname{End}_{S^{\lambda}H}(V).$$

Moreover, we denote by $\widetilde{S^{\lambda}H}$ the *F*-algebra $S^{\lambda}H/XS^{\lambda}H$ and by \widetilde{V} the factor module V/XV. Given $\lambda \in Z^2(H, F^*)$, $F^{\lambda}H$ denotes the twisted group algebra of *H* over *F* and $\overline{F^{\lambda}H}$ the quotient algebra of $F^{\lambda}H$ by the radical rad $F^{\lambda}H$. We identify an element a + P, $a \in F$, of the field $\overline{S} = S/P$ with the element *a*.

Lemma 1. [8, p.125] Let H be a finite group, $\lambda \in Z^2(H, S^*)$ and V an $S^{\lambda}H$ -module. Then V is indecomposable if and only if $\operatorname{End}_{S^{\lambda}H}(V)$ is a skewfield.

Lemma 2. Let H be a finite p-group, D a subgroup of H, $\lambda \in Z^2(H, S^*)$ and M an indecomposable $S^{\lambda}D$ -module. Assume that $\operatorname{End}_{S^{\lambda}D}(M)$ is isomorphic to a field $K, K \supset F$ and one of the following conditions is satisfied:

(i) H is Abelian;

(ii) [s(K) : F] is not divisible by p, where s(K) is the separable closure of F in K.

Then $M^H := S^{\lambda} H \otimes_{S^{\lambda} D} M$ is an indecomposable $S^{\lambda} H$ -module and

$$\operatorname{End}_{S^{\lambda}H}(M^H)$$

is isomorphic to a field that is a finite purely inseparable extension of the field K.

The proof is similar to that of Lemma 2.2 [2, p.540]. It uses the same idea as in Theorem 8 of [9].

Lemma 3. Let K be a finite separable extension of the field F and H a finite p-group. If |H| > 2, then there exists an indecomposable SH-module V such that $End_{SH}(V)$ is isomorphic to K.

P r o o f. Let $K = F(\theta)$, f(t) be the monic minimal polynomial of θ over F and Γ the companion matrix of f(t). Assume that either H is cyclic of order |H| > 2 or H is a group of type (2, 2). Let $H = \langle a \rangle$ and V be the underlying SH-module of the representation

$$a \mapsto \left(\begin{array}{ccc} E & XE & \Gamma \\ 0 & E & XE \\ 0 & 0 & E \end{array}\right)$$

of H, where E is the identity matrix of order $n = \deg f(t)$. Then, by [13, pp. 70–71], $\overline{\operatorname{End}_{SH}(V)} \cong K$. If $H = \langle a \rangle \times \langle b \rangle$ is a group of type (2, 2), then as V we take the underlying SH-module of the representation

$$a \mapsto \left(\begin{array}{cc} E & E \\ 0 & E \end{array} \right), \quad b \mapsto \left(\begin{array}{cc} E & \Gamma \\ 0 & E \end{array} \right).$$

By [13, p. 71], we have $\overline{\operatorname{End}_{SH}(V)} \cong K$.

Lemma 4. Let p = 2, $[F : F^2] = 2$, H be a 2-group such that $|H| \neq 8$ and |H'| = 2. Assume also that K is a finite separable extension of the field F and [K : F] is not divisible by 2. Then, for any $\lambda \in Z^2(H, F^*)$, there exists an indecomposable $S^{\lambda}H$ -module V such that $\overline{\operatorname{End}}_{S^{\lambda}H}(V)$ is isomorphic to a field that is a finite purely inseparable extension of the field K.

P r o o f. Let $H' = \langle c \rangle$, s be the number of invariants of the Abelian group H/H', D the subgroup of H such that $H' \subset D$ and $D/H' = \operatorname{soc}(H/H')$. We have

$$S^{\lambda}D/S^{\lambda}D(u_c - u_e) \cong S^{\bar{\lambda}}\bar{D},$$

where $\overline{D} = D/H'$ and $\overline{\lambda}_{xH',yH'} = \lambda_{x,y}$ for all $x, y \in D$. Assume s > 2. Since i(F) = 1,

$$F^{\lambda}\bar{D}\cong F^{\lambda}\bar{D}_1\otimes_F F\bar{D}_2,$$

where $\overline{D} = \overline{D}_1 \times \overline{D}_2$ and $|\overline{D}_2| \ge 4$. It follows that $S^{\overline{\lambda}}\overline{D} \cong S^{\overline{\lambda}}\overline{D}_1 \otimes_S S\overline{D}_2$. By Lemmas 2 and 3, there exists an indecomposable $S^{\overline{\lambda}}\overline{D}$ -module V such that

$$\operatorname{End}_{S^{\bar{\lambda}}\bar{D}}(V)$$

is a finite purely inseparable extension of the field K. The module V is also an $S^{\lambda}D$ -module. In view of Lemma 2, V^{H} is an indecomposable $S^{\lambda}H$ -module and

$$\operatorname{End}_{S^{\lambda}H}(V^H)$$

is a finite purely inseparable extension of K.

Now we consider the case s = 2. Since |H| > 8, then D is Abelian. Let $D = \langle a \rangle \times \langle b \rangle$, where $a^2 = c$ and $b^2 = e$. Then

$$S^{\lambda}D = \bigoplus_{i,j,k} Su_a^i u_b^j u_c^k,$$

where

$$u_a^2 = \alpha u_c, \quad u_b^2 = \beta u_e, \quad u_c^2 = u_e$$

and $\alpha, \beta \in F^*$. If $\alpha \in F^2$, then $S[u_a]$ is the group ring of the group $\langle a \rangle$ over the ring S. If $\beta \in F^2$ then $S^{\lambda}D$ contains the group ring SQ, where $Q = \langle c \rangle \times \langle b \rangle$. Assume that $\alpha \notin F^2$ and $\beta \notin F^2$. Since i(F) = 1, $\alpha^{-1} = \delta_0^2 + \delta_1^2 \beta$ for some $\delta_0, \delta_1 \in F$. Let $v = u_a(\delta_0 u_e + \delta_1 u_b)$. Then $v^2 = \alpha u_c \cdot \alpha^{-1} u_e = u_c$.

If $D = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ is of type (2,2,2), then $S^{\lambda}D$ contains SQ, where Q is a group of type (2,2).

Applying Lemmas 2 and 3, we finish the proof.

Lemma 5. Let $G = G_p \times B$ and $\lambda \in Z^2(G, S^*)$. The ring $S^{\lambda}G$ is of OTP representation type if and only if the outer tensor product of any indecomposable $S^{\lambda}G_p$ -module and any irreducible $S^{\lambda}B$ -module is an indecomposable $S^{\lambda}G$ -module.

The proof is similar to that of the corresponding fact for a group ring (see [6, p. 41], [13, p. 68]).

Let *B* be a finite p'-group and $\lambda \in Z^2(B, S^*)$. We denote by $S^{\lambda}B$ the *F*-algebra $S^{\lambda}B/XS^{\lambda}B$. For $y \in S^{\lambda}B$, let \tilde{y} denote $y + XS^{\lambda}B$. The *F*-algebra $\widetilde{S^{\lambda}B}$ is separable. By Theorem 6.8 [8, p. 124], if

$$\widetilde{S^{\lambda}B} = \widetilde{S^{\lambda}B}\varepsilon_1 \oplus \ldots \oplus \widetilde{S^{\lambda}B}\varepsilon_n$$

is a decomposition into minimal left ideals, then there exists a decomposition

$$S^{\lambda}B = S^{\lambda}Be_1 \oplus \ldots \oplus S^{\lambda}Be_n$$

where ε_i is an idempotent of $S^{\lambda}B$, e_i is an idempotent of $S^{\lambda}B$ and $\tilde{e_i} = \varepsilon_i$ for every $i \in \{1, \ldots, n\}$. Each ideal $S^{\lambda}Be_i$ is an irreducible $S^{\lambda}B$ -module. By Theorem 76.8 [7, p. 532] and Corollary 76.15 [7, p. 536], any irreducible $S^{\lambda}B$ -module is isomorphic to $S^{\lambda}Be_j$ for some $j \in \{1, \ldots, n\}$. Moreover, by Proposition 5.22 [8, p. 112] and Theorem 76.8 [7, p. 532],

$$\overline{\operatorname{End}_{S^{\lambda}B}S^{\lambda}Be_j}\cong\operatorname{End}_{S^{\lambda}B}S^{\lambda}Be_j/X\operatorname{End}_{S^{\lambda}B}S^{\lambda}Be_j\cong\operatorname{End}_{\widetilde{S^{\lambda}B}}\widetilde{S^{\lambda}B}\varepsilon_j.$$

Lemma 6. Let $G = G_p \times B$ and $\lambda \in Z^2(G, S^*)$. If V is an indecomposable $S^{\lambda}G_p$ -module and W is an irreducible $S^{\lambda}B$ -module, then

$$\overline{\operatorname{End}_{S^{\lambda}G}(V \# W)} \cong \overline{\operatorname{End}_{S^{\lambda}G_n}(V)} \otimes_F \overline{\operatorname{End}_{S^{\lambda}B}(W)}.$$

Proof. By Proposition 7.6 [14, p. 652],

 $\operatorname{End}_{S^{\lambda}G}(V \# W) \cong \operatorname{End}_{S^{\lambda}G_n}(V) \otimes_S \operatorname{End}_{S^{\lambda}B}(W).$

Applying Proposition 2 [6, p. 39], we obtain

$$\overline{\mathrm{End}_{S^{\lambda}G}(V \# W)} \cong \left(\overline{\mathrm{End}_{S^{\lambda}G_{p}}(V)} \otimes_{F} \overline{\mathrm{End}_{S^{\lambda}B}(W)}\right) / R_{F}$$

where $R := \operatorname{rad}\left(\overline{\operatorname{End}_{S^{\lambda}G}(V)} \otimes_{F} \overline{\operatorname{End}_{S^{\lambda}B}(W)}\right)$. Since $\overline{\operatorname{End}_{S^{\lambda}B}(W)}$ is a separable *F*-algebra, then

$$\overline{\operatorname{End}_{S^{\lambda}G_p}(V)} \otimes_F \overline{\operatorname{End}_{S^{\lambda}B}(W)}$$

is a semisimple algebra. Hence R = 0 and the result follows.

Lemma 7. Let $G = G_p \times B$ and $\lambda \in Z^2(G, S^*)$. If F is a splitting field for the algebra $\widetilde{S^{\lambda}B}$, then $S^{\lambda}G$ is of OTP representation type.

P r o o f. Let W be an irreducible $S^{\lambda}B$ -module. Then

$$\overline{\operatorname{End}_{S^{\lambda}B}W} \cong \operatorname{End}_{\widetilde{S^{\lambda}B}} \widetilde{W} \cong F,$$

where $\widetilde{W} = W/XW$. By Lemmas 1 and 6, V # W is an indecomposable $S^{\lambda}G$ -module for every indecomposable $S^{\lambda}G_p$ -module V. By Lemma 5, $S^{\lambda}G$ is of OTP representation type.

Lemma 8. Let B be a finite p'-group. Assume that F contains a primitive q^{th} root of 1 for every prime $q \mid \mid B \mid$ such that $p \mid (q-1)$. Then, for any F-algebra $\widetilde{S^{\lambda}B}$, there exists a splitting field K such that [K:F] is not divisible by p.

Proof. See [2, p. 548].

Proposition 1. Let S = F[[X]], T be the quotient field of S, B a finite p'-group and $\lambda \in Z^2(B, S^*)$. The field T is a splitting field for the algebra $T^{\lambda}B$ if and only if F is a splitting field for the F-algebra $\widehat{S^{\lambda}B}$.

P r o o f. Assume that T is a splitting field for $T^{\lambda}B$. Denote by W an irreducible $S^{\lambda}B$ -module. Since $T \otimes_S W$ is an absolutely irreducible $T^{\lambda}B$ -module, by Schur's Lemma, $\operatorname{End}_{S^{\lambda}B}(W) \cong S$. It follows that

$$\operatorname{End}_{\widetilde{\mathfrak{SA}}}(\widetilde{W}) \cong F.$$
 (1)

Hence F is a splitting field for $S^{\lambda}B$.

Now suppose that F is a splitting field for $S^{\lambda}B = S^{\lambda}B/XS^{\lambda}B$. Then there exists an isomorphism (1) for any irreducible $S^{\lambda}B$ -module W. It follows, by Theorem 76.8 [7, p. 532] and Corollary 76.16 [7, p. 536], that $\operatorname{End}_{S^{\lambda}B}(W) \cong S$, therefore $\operatorname{End}_{T^{\lambda}B}(T \otimes_S W) \cong T$. Hence T is a splitting field for $T^{\lambda}B$. \Box

3. Twisted group rings of OTP representation type

In this Section, S = F[[X]] and $G = G_p \times B$, where G_p is a Sylow *p*-subgroup of G, $|G_p| \neq 1$ and $|B| \neq 1$. We assume that if G_p is non-Abelian, then Fcontains a primitive q^{th} root of 1 for every prime $q \mid |B|$ such that $p \mid (q-1)$.

Theorem 1. Let $G = G_p \times B$, $\mu \in Z^2(G_p, S^*)$, $\nu \in Z^2(B, S^*)$, $\lambda = \mu \times \nu$ and $H = \text{Ker}(\mu)$. Assume that |H| > 2. The ring $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for $\widetilde{S^{\nu}B}$.

P r o o f. If F is a splitting field for $\widetilde{S^{\nu}B}$, then, by Lemma 7, the ring $S^{\lambda}G$ is of OTP representation type.

Assume now that F is not a splitting field for $\widehat{S^{\nu}B}$. There exists an irreducible $S^{\nu}B$ -module W such that $D := \operatorname{End}_{S^{\lambda}B}(W)$ is a division F-algebra of dimension greater than one. By [4, p. 268], the restriction of μ to $H \times H$ is a coboundary and $G'_p \subset H$. Suppose that G_p is non-Abelian. Then, by Lemma 8, there exists a splitting field K for $\widehat{S^{\nu}B}$, which is a finite separable extension of the field F and satisfies $[K:F] \not\equiv 0 \pmod{p}$. In view of Lemma 3, there is an indecomposable SH-module M such that $\operatorname{End}_{SH}(M)$ is isomorphic to K. According to Lemma 2, we conclude that M^{G_p} is an indecomposable $S^{\mu}G_p$ -module and

$$\operatorname{End}_{S^{\mu}G_p}(M^{G_p})$$

is isomorphic to a field L that is a finite purely inseparable extension of the field K. Since L is a splitting field for $D, L \otimes_F D$ is not a skewfield. Hence, by Lemmas 1 and 6, $M^{G_p} \# W$ is not an indecomposable $S^{\lambda}G$ -module. In view of Lemma 5, $S^{\lambda}G$ is not of OTP representation type.

The case, when G_p is Abelian, is treated similarly.

Corollary. [2, p. 553] Let $G = G_p \times B$, $|G'_p| > 2$ and $\lambda \in Z^2(G, S^*)$. The ring $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for $\widetilde{S^{\lambda}B}$.

P r o o f. Let μ be the restriction of λ to $G_p \times G_p$. Since $G'_p \subset \text{Ker}(\mu)$, we have $|\text{Ker}(\mu)| > 2$. Next apply Theorem 1.

Proposition 2. Let B be a nilpotent p'-group.

(i) If the field F does not contain a primitive q^{th} root of 1 for some prime $q \mid |B|$, then F is not a splitting field for each algebra $F^{\lambda}B$.

(ii) The field F is a splitting field for all twisted group algebras $F^{\lambda}B$ if and only if $F = F^q$ and F contains a primitive q^{th} root of 1 for every prime $q \mid |B|$.

P r o o f. (i) Assume that F does not contain a primitive q^{th} root of 1 for some prime $q \mid \mid B \mid$. The center of a Sylow q-subgroup B_q of B contains an element bof order q. If $\{u_g : g \in B\}$ is a natural F-basis of the algebra $F^{\lambda}B$, then u_b lies in the center of $F^{\lambda}B$. Let $u_b^q = \gamma u_e, \gamma \in F^*$, and let F be a splitting field for the algebra $F^{\lambda}B$. Denote by f_1, \ldots, f_m a complete system of minimal pairwise orthogonal central idempotents of $F^{\lambda}B$. We have $u_b = \beta_1 f_1 + \ldots + \beta_m f_m$, where $\beta_j \in F$ for any $j \in \{1, \ldots, m\}$. Then $\gamma = \beta_j^q$ for every j. It follows that $\beta_1 = \ldots = \beta_m$, hence $u_b = \beta_1 u_e$. This contradiction proves that F is not a splitting field for the algebra $F^{\lambda}B$.

(ii) Suppose that F is a splitting field for $F^{\lambda}B$ for each $\lambda \in Z^2(B, F^*)$. Then every irreducible projective F-representation of the group B is absolutely irreducible. Let q be a prime divisor of |B|. There exists a normal subgroup D of B such that |B/D| = q. Denote by $\pi \colon B \to B/D$ the canonical group homomorphism and by V a finite-dimensional vector space over F. If $\overline{\Gamma} \colon B/D \to \operatorname{GL}(V)$ is an irreducible projective F-representation of B/D on V, then $\Gamma := \overline{\Gamma} \circ \pi$ is an irreducible projective F-representation of B on the space V and $D \subset \operatorname{Ker}(\Gamma)$. Assume that $B/D = \langle bD \rangle$ and $\overline{\Gamma}(bD)^q = \gamma \operatorname{id}_V$, $\gamma \in F^*$. Since every $\overline{\Gamma}$ is absolutely irreducible, $\gamma \in F^q$ and F contains a primitive q^{th} root of 1.

Assume now that the field F contains a primitive q^{th} root of 1 and $F = F^q$ for each prime $q \mid \mid B \mid$. Let $\lambda \in Z^2(B, F^*)$. Then $F^{\lambda}B = F^{\mu}B$, where $\mu_{x,y}^{\mid B \mid} = 1$ for all $x, y \in B$. There exists an F-algebra homomorphism of FH onto $F^{\mu}B$, where H is a central extension of a cyclic group of order $\mid B \mid$ by the group B. Since F contains a primitive $\mid H \mid^{\text{th}}$ root of 1, by Corollary 70.24 [7, p. 475], F is a splitting field for FH. Hence, F is a splitting field for $F^{\lambda}B$ for each $\lambda \in Z^2(B, F^*)$.

Proposition 3. Let $G = G_p \times B$, $|G'_p| \neq 2$, $\mu \in Z^2(G_p, F^*)$, $\nu \in Z^2(B, S^*)$ and $\lambda = \mu \times \nu$. The ring $S^{\lambda}G$ is of OTP representation type if and only if one of the following conditions is satisfied:

(i) $F^{\mu}G_{p}$ is a field;

(*ii*) p = 2, $|G'_2| = 1$ and $2 \dim_F \overline{F^{\mu}G_2} = |G_2|$;

(iii) F is a splitting field for the F-algebra $\widetilde{S^{\nu}B}$.

P r o o f. If $|G'_p| > 2$ then, by Corollary to Theorem 1, the ring $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for $\widetilde{S^{\nu}B}$. Let $|G'_p| = 1$ and $K = F^{\mu}G_p$. If K is a field, then $S^{\mu}G_p = K[[X]]$ is a principal ideal ring. Every indecomposable $S^{\mu}G_p$ -module is isomorphic to $S^{\mu}G_p$. We have

$$\overline{\operatorname{End}_{S^{\mu}G_p}(S^{\mu}G_p)} \cong S^{\mu}G_p/XS^{\mu}G_p \cong K.$$

The field K is a finite purely inseparable extension of F. Let W be an irreducible $S^{\nu}B$ -module and $D := \overline{\operatorname{End}}_{S^{\nu}B}(W)$. Then $D \cong \operatorname{End}_{\widetilde{S^{\nu}B}}(\widetilde{W})$. Since $\widetilde{S^{\nu}B}$ is a separable algebra, the center of the division F-algebra D is a separable extension of F [7, p. 485]. The index of D is not divisible by p [16]. It follows that $K \otimes_F D$ is a skewfield. Applying Lemmas 1 and 6, we conclude that $S^{\mu}G_{p}\#W$ is an indecomposable $S^{\lambda}G$ -module. Hence, by Lemma 5, $S^{\lambda}G$ is of OTP representation type.

Assume that p > 2 and K is not a field. Let H be the socle of G_p . We have $F^{\mu}H \cong F^{\mu}H_1 \otimes_F FH_2$, where $|H_2| \ge p$. It follows that $S^{\mu}H \cong S^{\mu}H_1 \otimes_S SH_2$. By Lemmas 2 and 3, for any finite separable extension L of the field F, there exists an indecomposable $S^{\mu}G_p$ -module V such that $\overline{\operatorname{End}}_{S^{\mu}G_p}(V)$ is a finite purely inseparable extension of L. Arguing as in the proof of Theorem 1, we conclude that $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for the algebra $\widetilde{S^{\nu}B}$.

Suppose that p = 2 and K is not a field. If $4 \dim_F \overline{F^{\mu}G_2} \leq |G_2|$ then, as in the case p > 2, we prove that $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for the algebra $\widetilde{S^{\nu}B}$. If $2 \dim_F \overline{F^{\mu}G_2} = |G_2|$ then, by Theorem 4.2 [2, p. 552], the ring $S^{\lambda}G$ is of OTP representation type. \Box

Corollary. Let G_p be an Abelian p-group, B a nilpotent p'-group, $G = G_p \times B$, $\mu \in Z^2(G_p, F^*)$, $\nu \in Z^2(B, S^*)$ and $\lambda = \mu \times \nu$. Assume that the field F does not contain a primitive q^{th} root of 1 for some prime $q \mid |B|$. The ring $S^{\lambda}G$ is of OTP representation type if and only if one of the following conditions is satisfied:

(i) $F^{\mu}G_{p}$ is a field;

(*ii*) p = 2 and $2 \dim_F \overline{F^{\mu}G_2} = |G_2|$.

P r o o f. Apply Propositions 2 and 3.

Proposition 4. Let p = 2, $G = G_2 \times B$, $\mu \in Z^2(G_2, F^*)$, $\nu \in Z^2(B, S^*)$ and $\lambda = \mu \times \nu$. Assume that $|G_2| \neq 8$, $|G'_2| = 2$ and $[F:F^2] \leq 2$. Then $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for $\widetilde{S^{\nu}B}$.

P r o o f. If F is a perfect field, then μ is a coboundary [15, p. 43]. In this case $S^{\mu}G_2$ is the group ring SG_2 . Since $|G_2| > 8$, by Theorem 1, $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for $\widetilde{S^{\nu}B}$. Assume

now that $[F: F^2] = 2$. Arguing as in the proof of Theorem 1, we deduce, by Lemmas 1, 4, 5, 6 and 7, that $S^{\lambda}G$ is of OTP representation type if and only if F is a splitting field for $\widetilde{S^{\nu}B}$.

4. Groups of OTP projective representation type

We recall from [3, p. 200] that i(F) is the supremum of the set that consists of 0 and all positive integers m such that an F-algebra of the form

$$F[t]/(t^p - \alpha_1) \otimes_F \ldots \otimes_F F[t]/(t^p - \alpha_m)$$

is a field for some $\alpha_1, \ldots, \alpha_m \in K$.

Theorem 2. Let $G = G_p \times B$, $|G'_p| \neq 2$ and s be the number of invariants of G_p/G'_p . The group G is of OTP projective (S, F^*) -representation type if and only if one of the following conditions is satisfied:

(i) $|G'_p| = 1$ and $s \le i(F)$;

(ii) p = 2, $|G'_2| = 1$, s = i(F) + 1 and G_2 has at least one invariant equal to 2;

(iii) F is a splitting field for $F^{\sigma}B$ for some $\sigma \in Z^2(B, F^*)$.

P r o o f. Let p = 2 and G_2 be Abelian. If $s \ge i(F) + 2$, then $4 \dim_F \overline{F^{\lambda}G_2} \le |G_2|$ for any $\lambda \in Z^2(G_2, F^*)$. In this case, by Proposition 3, G is of OTP projective (S, F^*) -representation type if and only if the condition (iii) is satisfied. Assume that s = i(F) + 1. If G_2 has at least one invariant equal to 2, then there exists a cocycle $\lambda \in Z^2(G_2, F^*)$ such that $2 \dim_F \overline{F^{\lambda}G_2} = |G_2|$. Hence, by Proposition 3, G is of OTP projective (S, F^*) -representation type. Suppose that every invariant of G_2 is greater than 2. Then $4 \dim_F \overline{F^{\lambda}G_2} \le |G_2|$ for each $\lambda \in Z^2(G_2, F^*)$. By Proposition 3, G is of OTP projective (S, F^*) -representation type if and only if the condition (iii) is satisfied.

Let $p \geq 2$ and G_p be Abelian. There exists a cocycle $\mu \in Z^2(G_p, F^*)$ such that $F^{\mu}G_p$ is a field if and only if $s \leq i(F)$. For any $\nu \in Z^2(B, F^*)$, we have $\widetilde{S^{\nu}B} \cong F^{\nu}B$. Applying Proposition 3, we finish the proof.

Corollary. Let G_p be an Abelian p-group, s the number of invariants of G_p , B a nilpotent p'-group and $G = G_p \times B$. Assume that the field F does not contain a primitive qth root of 1 for some prime $q \mid |B|$. The group G is of OTP projective (S, F^*) -representation type if and only if one of the following conditions is satisfied:

(i)
$$s \leq i(F)$$
;
(ii) $p = 2$, $s = i(F) + 1$ and G_2 has at least one invariant equal to 2.

P r o o f. Apply Proposition 2 and Theorem 2.

Lemma 9. Let B be an Abelian p'-group. The field F is a splitting field for some algebra $F^{\lambda}B$ if and only if B has a subgroup H such that B/H is of symmetric type and F contains a primitive m^{th} root of 1, where $m = \max\{\exp(B/H), \exp H\}.$

P r o o f. Let $\lambda \in Z^2(B, F^*)$, $\{u_b : b \in B\}$ be a natural *F*-basis of the algebra $F^{\lambda}B, Z$ the center of $F^{\lambda}B$ and $H = \{g \in B : u_g \in Z\}$. Then *H* is a subgroup of *B* and $Z = F^{\lambda}H$. The algebra $F^{\lambda}B$ may be viewed as a twisted group ring of the group $\overline{B} := B/H$ over the ring *Z*. By Lemma 3 [1, p. 785],

$$F^{\lambda}B = Z^{\bar{\lambda}}\bar{B} \cong Z^{\bar{\lambda}}N_1 \otimes_Z \ldots \otimes_Z Z^{\bar{\lambda}}N_r,$$

where N_i is a group of type $(q_i^{n_i}, q_i^{n_i})$, q_i is a prime divisor of $|\bar{B}|$ and $Z^{\bar{\lambda}}N_i$ is a central Z-algebra, moreover

$$\gamma_{x,y} := \bar{\lambda}_{x,y} \cdot \bar{\lambda}_{y,x}^{-1} \in F$$

and

$$\gamma_{x,y}^{q_i^{n_i}} = 1$$

for all $x, y \in N_i$. It follows that F contains a primitive $(\exp \overline{B})^{\text{th}}$ root of 1.

If F is a splitting field for $F^{\lambda}B$, then F is a splitting field for the commutative F-algebra $Z = F^{\lambda}H$. Therefore F contains a primitive $(\exp H)^{\text{th}}$ root of 1. The group $\bar{B} = N_1 \times \ldots \times N_r$ is of symmetric type. This proves the necessity.

Let us prove the sufficiency. Denote by K a finite subfield of the field F which contains a primitive m^{th} root of 1, where $m = \max\{\exp(B/H), \exp H\}$. We may assume that B is an Abelian q-group, where $q \neq p$. Let

$$\bar{B} := B/H = \langle x_1H \rangle \times \langle y_1H \rangle \times \ldots \times \langle x_rH \rangle \times \langle y_rH \rangle,$$

where $|x_iH| = |y_iH| = q^{n_i}$ for each $i \in \{1, \ldots, r\}$. We have

$$x_i^{q^{n_i}} = h_i, \quad y_i^{q^{n_i}} = h_i^*,$$

where $h_i, h_i^* \in H$. Let Z = KH with K-basis $\{u_h : h \in H\}$ and let $A = Z^{\mu}\overline{B}$ be the twisted group ring of \overline{B} over Z with Z-basis $\{v_{bH} : b \in B\}$ satisfying the following conditions:

1) if $bH = (x_1H)^{i_1}(y_1H)^{j_1}\dots(x_rH)^{i_r}(y_rH)^{j_r}$, where $0 \le i_s, j_s < q^{n_s}$, then

$$v_{bH} = v_{x_1H}^{i_1} v_{y_1H}^{j_1} \dots v_{x_rH}^{i_r} v_{y_rH}^{j_r};$$

2) $v_{x_sH}^{q^{n_s}} = u_{h_s}, v_{y_sH}^{q^{n_s}} = u_{h_s^*}$ for all $s \in \{1, \ldots, r\}$; 3) $v_{bH} \cdot v_{\bar{b}H} = \xi_1^{j_1 \bar{i}_1} \dots \xi_r^{j_r \bar{i}_r} v_{x_1H}^{i_1 + \bar{i}_1} v_{y_1H}^{j_1 + \bar{j}_1} \dots v_{x_rH}^{i_r + \bar{i}_r} v_{y_rH}^{j_r + \bar{j}_r}$, where ξ_s is a primitive $(q^{n_s})^{\text{th}}$ root of 1 for every $s \in \{1, \ldots, r\}$. Then

$$A \cong Z^{\mu} N_1 \otimes_Z \ldots \otimes_Z Z^{\mu} N_r,$$

where $Z^{\mu}N_s$ is a central twisted group ring of the group $N_s = \langle x_s H \rangle \times \langle y_s H \rangle$ over the ring Z.

Let g be an element of the group B. Then

$$g = x_1^{d_1} y_1^{t_1} \dots x_r^{d_r} y_r^{t_r} h,$$

where $0 \le d_s, t_s < q^{n_s}$ for every $s \in \{1, \ldots, r\}$ and $h \in H$. We set

$$w_g = v_{x_1H}^{d_1} v_{y_1H}^{t_1} \dots v_{x_rH}^{d_r} v_{y_rH}^{t_r} u_h.$$

Then $\{w_g \colon g \in B\}$ is a K-basis of the algebra A and $w_{g_1}w_{g_2} = \lambda_{g_1,g_2}w_{g_1g_2}$, where $\lambda_{g_1,g_2} \in K^*$ for all $g_1, g_2 \in B$. Hence $A = K^{\lambda}B$ and K is a splitting field for the algebra $K^{\lambda}B$. It follows that F is a splitting field for the algebra $F^{\lambda}B = F \otimes_K K^{\lambda}B$.

Lemma 10. Let B be an Abelian p'-group of symmetric type and $\exp B = q_1^{m_1} \dots q_t^{m_t}$, where q_1, \dots, q_t are pairwise distinct prime numbers. The field F is a splitting field for certain algebra $F^{\lambda}B$ if and only if F contains a primitive n^{th} root of 1, where $n = q_1^{k_1} \dots q_t^{k_t}$ and $2k_j \ge m_j$ for every $j \in \{1, \dots, t\}$.

P r o o f. Without loss of generality, we may assume that B is an Abelian q-group of exponent q^m . Let F contain a primitive $(q^l)^{\text{th}}$ root of 1 and F does not contain a primitive $(q^{l+1})^{\text{th}}$ root of 1. If $l \ge m$ then F is a splitting field for the group algebra FB. Let $\frac{m}{2} \le l < m$. The group B has a subgroup H of exponent q^{m-l} such that B/H is of symmetric type and $\exp(B/H) = q^l$. Since $m - l \le l$, by Lemma 9, F is a splitting field for certain algebra $F^{\nu}B$. Suppose now that $l < \frac{m}{2}$. Let $\lambda \in Z^2(B, F^*)$, Z be the center of $F^{\lambda}B$ and H a subgroup of B such that $Z = F^{\lambda}H$. Then $\exp H \ge q^{m-l}$. If F is a splitting field for $F^{\lambda}B$, then $\exp H \le q^l$. We have $q^{m-l} \le q^l$, whence $m - l \le l$. Hence $l \ge \frac{m}{2}$. This contradiction shows that F is not a splitting field for every algebra $F^{\lambda}B$.

Proposition 5. Let $G = G_p \times B$ be an Abelian group and s the number of invariants of G_p . The group G is of OTP projective (S, F^*) -representation type if and only if one of the following conditions is satisfied:

(i) $s \leq i(F);$

(ii) p = 2, s = i(F) + 1 and G_2 has at least one invariant equal to 2;

(iii) B has a subgroup H such that B/H is of symmetric type and F contains a primitive m^{th} root of 1, where $m = \max\{\exp(B/H), \exp H\}$.

Proof. Apply Theorem 2 and Lemma 9.

Proposition 6. Let $G = G_p \times B$ be an Abelian group and s the number of invariants of G_p . Assume that B is of symmetric type and $\exp B = q_1^{m_1} \dots q_t^{m_t}$, where q_1, \dots, q_t are pairwise distinct prime numbers. The group G is of OTP projective (S, F^*) -representation type if and only if one of the following conditions is satisfied:

(i) $s \leq i(F)$;

(ii) p = 2, s = i(F) + 1 and G_2 has at least one invariant equal to 2;

(iii) F contains a primitive nth root of 1, where $n = q_1^{k_1} \dots q_t^{k_t}$ and $2k_j \ge m_j$ for each $j \in \{1, \dots, t\}$.

P r o o f. Apply Theorem 2 and Lemma 10.

5. Groups of purely OTP projective representation type

Lemma 11. [5, p. 322] Let R be a Noetherian integral domain whose integral closure is a finitely generated R-module. Then every finitely generated torsion free R-module is a direct sum of ideals in R if and only if each ideal in R is generated by one or two elements.

Theorem 3. Let $G = G_p \times B$. The group G is of purely OTP projective S-representation type if and only if $|G_p| = 2$ or F is a splitting field for $F^{\nu}B$ for any $\nu \in Z^2(B, F^*)$.

P r o o f. Assume that $|G_p| > 2$ and $\sigma \in Z^2(B, S^*)$. By Theorem 1, the ring $S^{\lambda}G = SG_p \otimes_S S^{\sigma}B$ is of OTP representation type if and only if F is a splitting field for $\widetilde{S^{\sigma}B}$. Hence, by Lemma 7, if $|G_p| > 2$ then G is of purely OTP projective S-representation type if and only if F is a splitting field for every algebra $F^{\nu}B$.

Let p = 2 and $G_2 = \langle a \rangle$ be the group of order 2. If V is an indecomposable SG_2 -module then, by [13, p. 70], $End_{SG_2}(V) \cong F$. Hence, by Lemmas 1, 5 and 6, the ring $SG_2 \otimes_S S^{\nu}B$ is of OTP representation type for any $\nu \in Z^2(B, S^*)$. Suppose now that $\lambda \in Z^2(G, S^*)$ and $S^{\lambda}G_2$ is not a group ring. Then $S^{\lambda}G_2 = Su_e + Su_a$, where $u_a^2 = f(X)u_e$, $f(X) \in S^*$ and $f(X) \notin S^2$. Let $f(X) = a_0 + a_1X + a_2X^2 + \ldots$, where $a_j \in F$ for every $j \in \{0, 1, 2, \ldots\}$, θ be a root of the polynomial $t^2 - f(X)$ and $K = T(\theta)$, where T is the quotient field of S. We have $S^{\lambda}G_2 \cong S[\theta]$. Denote by L the integral closure of $S[\theta]$ in the field K. Then $L = S[\omega]$, where $\omega = \theta$ or $\omega = X^{-n}(b_0 + b_1X + \ldots + b_{n-1}X^{n-1} + \theta)$, moreover in the second case

$$f(X) = b_0^2 + b_1^2 X^2 + \ldots + b_{n-1}^2 X^{2(n-1)} + \sum_{j \ge 2n} a_j X^j,$$

 $n \ge 1, a_{2n} \notin F^2$ or $a_{2n+1} \ne 0$.

Every ideal of the ring $S[\theta]$ is generated by one or two elements. Let V be an indecomposable $S[\theta]$ -module. If $z \in S[\theta]$, $v \in V$ and zv = 0, then $z^2v = 0$. Since $z^2 \in S$ and V is a free S-module, $z^2 = 0$ or v = 0. Hence z = 0 or v = 0. This means that V is a torsion-free $S[\theta]$ -module. By Lemma 11, V is isomorphic to an ideal J of the ring $S[\theta]$. The ideal J is a free S-module of rank 2. It follows that $T \otimes_S J$ is an indecomposable $T^{\lambda}G_2$ -module. By Theorem 3.1 [2, p. 549], the algebra $T^{\lambda}G$ is of OTP representation type. Therefore, $(T \otimes_S J) \# (T \otimes_S W)$ is an indecomposable $T^{\lambda}G$ -module for any irreducible $S^{\lambda}B$ -module W. It follows that J # W is an indecomposable $S^{\lambda}G$ -module. By Lemma 5, the ring $S^{\lambda}G$ is of OTP representation type. Hence, G is of purely OTP projective S-representation type.

Corollary. Let $G = G_p \times B$ be a nilpotent group. The group G is of purely OTP projective S-representation type if and only if one of the following conditions is satisfied:

- (*i*) $|G_p| = 2;$
- (ii) $F = F^{q}$ and F contains a primitive q^{th} root of 1 for each prime $q \mid |B|$.

P r o o f. Apply Proposition 2 and Theorem 3.

Proposition 7. Let $G = G_p \times B$. Assume that $F = F^q$ and F contains a primitive q^{th} root of 1 for each prime $q \mid |B|$. Then G is of purely OTP projective S-representation type.

P r o o f. The field F is a splitting field for any algebra $F^{\nu}B$. Hence, by Lemma 7, $S^{\lambda}G$ is of OTP representation type for every $\lambda \in Z^2(G, S^*)$. \Box

Corollary. If F is a separably closed field, then every group $G = G_p \times B$ is of purely OTP projective S-representation type.

References

- L.F. Barannyk. On the question of faithful projective representations of finite Abelian groups over arbitrary field. Ukrain. Math. J., 26, No. 6, 784-790, 1974.
- [2] L.F. Barannyk. Modular projective representations of direct products of finite groups. Publ. Math. Debrecen, 63 (4), 537-554, 2003.
- [3] L.F. Barannyk. On faithful irreducible projective representations of finite groups over a field of characteristic p. J. Algebra, 321, 194–204, 2009.

 \square

- [4] L.F. Barannyk, D. Klein. Twisted group rings of strongly unbounded representation type. Collog. Math., 100 (2), 265–287, 2004.
- [5] H. Bass. Torsion free and projective modules. Trans. Amer. Math. Soc., 102 (2), 319–327, 1962.
- [6] H.I. Blau. Indecomposable modules for direct products of finite groups. Pacific J. Math., 54 (1), 39-44, 1974.
- [7] C.W. Curtis, I. Reiner. Representation Theory of Finite Groups and Associative Algebras. Interscience, New York, 1962.
- [8] C.W. Curtis, I. Reiner. Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1. Willey, New York, 1981.
- [9] J.A. Green. On the indecomposable representations of a finite group. Math. Z., 70, 430-445, 1959.
- [10] P.M. Gudyvok. On modular and integral representations of finite groups. Dokl. Akad. Nauk SSSR, 214, No. 5, 993–996, 1974. (In Russian).
- [11] P.M. Gudyvok. On modular and integral P-adic representations of direct product of groups. Ukrain. Math. J., 29, No. 5, 580-588, 1977. (In Russian).
- [12] P.M. Gudyvok. On representations of direct product of groups over complete discrete valuation rings. *Dokl. Akad. Nauk SSSR*, 237, No. 1, 25–27, 1977. (In Russian).
- [13] P.M. Gudyvok. On representations of a direct product of finite groups over complete discrete valuation rings. Ukrain. Math. Bull., 2, No. 1, 67-75, 2005.
- [14] G. Karpilovsky. Group Representations, Vol. 1. North-Holland Mathematics Studies 175, North-Holland, Amsterdam, 1992.
- [15] G. Karpilovsky. Group Representations, Vol. 2. North-Holland Mathematics Studies 177, North-Holland, Amsterdam, 1993.
- [16] H.N. Ng. Degrees of irreducible representations of finite groups. J. London Math. Soc., (2)10, 379–384, 1975.