PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of pandemic with game methodology and numerical approximation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We build a mathematical game model of pandemic transmission, including vaccinations of population and budget costs of different acting to eliminate pandemic. We assume the interactions among different groups: vaccinated, susceptible, exposed, infectious, super-spreaders, hospitalized and fatality, defining a system of ordinary differential equations, which describes compartment model of disease and costs of the treatment. The goal of the game is to describe the development disease under different types of treatment, but including costs of them and social restrictions, during the shortest time period. To this effect we construct a dual dynamic programming method to describe open-loop Nash equilibrium for treatment, a group of people having antibodies and budget costs. Next, we calculate numerically an approximate open-loop Nash equilibrium.
Rocznik
Strony
651--680
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wzory
Twórcy
  • Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, Łódz, 90-238, Poland
  • Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, Łódz, 90-238, Poland
Bibliografia
  • [1] D. Acemoglu, V. Chernozhukov, I. Werning and M. D. Whinston: Optimal targeted lockdowns in a Multi-Group SIR model. American Economic Review: Insights, 3(4), (2021), 487-502. DOI: 10.1257/aeri.20200590.
  • [2] M. Alam, K.M.A. Kabir and J. Tanimoto: Based on mathematical epidemiology and evolutionary game theory, which is more effective: quarantine or isolation policy? Journal of Statistical Mechanics: Theory and Experiment, (2020). DOI: 10.1088/1742-5468/ab75ea.
  • [3] T. Başar and G.J. Olsder: Dynamic Noncooperative Game Theory. SIAM, 1998.
  • [4] C.T. Bauch: Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society B, 272 (2005), 1669-1675. DOI: 10.1098/rspb.2005.3153.
  • [5] C.T. Bauch and S. Bhattacharyya: Evolutionary game theory and social learning can determine how vaccine scares unfold. PLoS Computational Biology, 8(4), (2012), 1-12. DOI: 10.1371/journal.pcbi.1002452.
  • [6] C.T. Bauch and D.J.D. Earn: Vaccination and the theory of games. PNAS, 101(36), (2004), 13391-13394. DOI: 10.1073/pnas.0403823101.
  • [7] C. Britto, B.H. Foy, B. Wahl, K. Mehta, A. Shet and G.I. Menon: Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study. International Journal of Infectious Diseases, 103, (2021), 431-438. DOI: 10.1016/j.ijid.2020.12.075.
  • [8] K.M. Bubar, K. Reinholt, S.M. Kissler, M. Lipsitch, S. Cobey, Y.H. Grad and D.B. Larremore: Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science, 371 (2021), 916-921. DOI: 10.1126/science.abe6959.
  • [9] A. Buratto, M. Muttoni, S. Wrzaczek and M. Freiberger: Should the COVID-19 lockdown be relaxed or intensified in case a vaccine becomes available? PLoS ONE, 17(9), (2022), 1-28. DOI: 10.1371/journal.pone.0273557.
  • [10] P. van den Driessche and J. Watmough: Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180 2002, 29-48. DOI: 10.1016/S0025-5564(02)00108-6.
  • [11] D. Faranda and T. Alberti: Modeling the second wave of COVID-19 infections in France and Italy via a stochastic SEIR model. Chaos, 30(11), (2020). DOI: 10.1063/5.0015943.
  • [12] D. Faranda, T. Alberti, M. Arutkin, V. Lembo and V. Lucarini: Interrupting vaccination policies can greatly spread SARS-CoV-2 and enhance mortality from COVID-19 disease: The AstraZeneca case for France and Italy. Chaos, 31 (2021). DOI: 10.1063/5.0050887.
  • [13] G. Giordano, G. De Nicolao, P. Sacchi, P. Colaneri and R. Bruno: Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy. Nature Medicine, 27 (2021), 993-998.
  • [14] A. B. Gumel, E. A. Iboi, C. N. Ngonghala and E.H. Elbasha: A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations. Infectious Disease Modelling, 6 (2021), 148-168. DOI: 10.1016/j.idm.2020.11.005.
  • [15] P. C. Jentsch, M. Anand and C.T. Bauch: Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study. The Lancet Infectious Diseases, 21(8), (2021), 1097-1106. DOI: 10.1016/S1473-3099(21)00057-8.
  • [16] K. M. A. Kabir and J. Tanimoto: Evolutionary game theory modelling to represent the behavioural dynamics of economic shutdowns and shield immunity in the COVID-19 pandemic. Royal Society Open Science, 7 (2020). DOI: 10.1098/rsos.201095.
  • [17] A. Krawczyk and A. Nowakowski: Optimal control of inhibiting tumor, new approach to sufficient 𝜀-optimality and numerical computation. Computers and Mathematics with Applications, 80(5), (2020). DOI: 10.1016/j.camwa.2020.04.012.
  • [18] M.V. Krishna: Mathematical modelling on diffusion and control of COVID-19. Infectious Disease Modelling, 5 (2020), 588-597. DOI: 10.1016/j.idm.2020.08.009.
  • [19] X. Lai and A. Friedman: Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS One, 12(5), (2017). DOI: 10.1371/journal.pone.0178479.
  • [20] D. Machowska and A. Nowakowski: Competition in defensive and offensive advertising strategies in a segmented market. European Journal of Control, 53 (2020), 98-108. DOI: 10.1016/j.ejcon.2019.10.004.
  • [21] R. Matusik and A. Nowakowski: Control of COVID-19 transmission dynamics game theoretical approach. Nonlinear Dynamics, 110 (2022), 857-877. DOI: 10.1007/s11071-022-07654-6.
  • [22] S. Moore, E.M. Hill, M.J. Tildesley, L. Dyson and M.J. Keeling: Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. The Lancet Infectious Diseases, 21(6), (2021). DOI: 10.1016/S1473-3099(21)00143-2.
  • [23] F. Ndaïrou, I. Area, J.J. Nieto and F.M.D. Torres: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Soliton and Fractals, 135 (2020), 1-6. DOI: 10.1016/j.chaos.2020.109846.
  • [24] I. Nowakowska and A. Nowakowski: A dual dynamic programming for minimax optimal control problems governed by parabolic equation. Optimization, 60 (2011), 347-363. DOI: 10.1080/02331930903104390.
  • [25] A. Nowakowski: Sufficient optimality conditions for Dirichlet boundary control of wave equations. SIAM Journal Control Optimization, 47(1), (2008), 92-110. DOI: 10.1137/050644008.
  • [26] F. Parino, L. Zino, G.C. Calafiore and A. Rizzo: A model predictive control approach to optimally devise a two-dose vaccination rollout: A case study on COVID-19 in Italy. International Journal of Robust and Nonlinear Control, (2021), 4808-4823. DOI: 10.1002/rnc.5728.
  • [27] S.A. Pedro, F.T. Ndjomatchoua, P. Jentsch, J.M. Tchuenche, M. Anand and C.T. Bauch: Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes. Frontiers in Physics, 8 (2020). DOI: 10.3389/fphy.2020.574514.
  • [28] S. Sunohara, T. Asakura, T. Kimura, S. Ozawa, S. Oshima, D. Yamauchi and A. Tamakoshi: Effective vaccine allocation strategies, balancing economy with infection control against COVID-19 in Japan. PLoS ONE, 16(9), (2021). DOI: 10.1371/journal.pone.0257107.
  • [29] J. Tanimoto: Fundamentals of Evolutionary Game Theory and its Applications. Springer, 2015.
  • [30] H. Wang and N. Yamamoto: Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona. Mathematical Biosciences and Engineering, 17(5), (2020), 4891-4904. DOI: 10.3934/mbe.2020266.
  • [31] A. Zeb, E. Alzahrani, V.S. Erturk and G. Zaman: Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class. Hindawi BioMed Research International, (2020), 1-7. DOI: 10.1155/2020/3452402.
  • [32] S. Zhao, L. Stone, D. Gao, S.S. Musa, M.K.C. Chong, D. He and M.H. Wang: Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to 2020. Annals of Translational Medicine, 8(7), (2020). DOI: 10.21037/atm.2020.03.168.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f7896bf-34e3-4e02-a62c-9c597aa31728
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.