PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trophic connectivity between intertidal and offshore food webs in Mirs Bay, China

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Trophic interactions are common worldwide, both within and between ecosystems. This study elucidated the trophic connectivity between intertidal and offshore zone, in Mirs Bay, China. The contributions of offshore suspended particulate organic matter (SPOM), intertidal macroalgae and epiphytes to consumer biomass were assessed, and the trophic pathways were identified through the use of stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) of basal sources and consumers. Mean δ13C values of basal sources had a wide range (-19.6‰ to -11.8‰) and were generally well separated in Mirs Bay. The average δ13C of consumers in Mirs Bay ranged from -19.2‰ to -11.8‰, reflecting a carbon source integrated from different primary producer signals. IsoSource model solutions indicated consumers assimilated organic carbon from a mixture of basal sources. Offshore SPOM carbon was the primary carbon source supporting most consumers in both intertidal and offshore zones. Intertidal macroalgae and epiphytes also accounted for a large fraction for some consumers. δ15N data indicated 5 trophic levels in Mirs Bay. Intertidal consumers, except for Capitulum mitella, had a TP (trophic position) between 2 and 3, and mainly included filter-feeders and grazers. In contrast, almost all offshore consumers had a TP of between 3 and 4 except for filter-feeders (zooplankton), planktivores (Clupanodon punctatus and Sardinella aurita) and piscivores (Gymnura japonica). The basal sources fueled consumer through two trophic pathways, each of which involved organisms of both intertidal and offshore zones, implying trophic connectivity between them in the Mirs Bay ecosystem.
Czasopismo
Rocznik
Strony
208--217
Opis fizyczny
Bibliogr. 57 poz., mapa, tab., wykr.
Twórcy
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
Bibliografia
  • [1] Belicka, L. L., Burkholder, D., Fourqurean, J. W., Heithaus, M. R., Macko, S. A., Jaffe, R., 2012. Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem. Mar. Freshwater Res. 63 (11), 1085-1097, http://dx.doi.org/10.1071/MF12027.
  • [2] Blackmore, G., 2000. Field evidence of metal transfer from invertebrate prey to an intertidal predator, Thais clavigera (Gastropoda: Muricidae). Estuar. Coast. Shelf. Sci. 51 (2), 127-139, http://dx. doi.org/10.1006/ecss.2000.0643.
  • [3] Bouillon, S., Mohan, P. C., Sreenivas, N., Dehairs, F., 2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Mar. Ecol.-Prog. Ser. 208 (1), 79-92, http://dx.doi.org/10.3354/meps208079.
  • [4] Burnett, N. P., Villarta, K. A., Williams, G. A., 2014. Rasping patterns of the high-shore limpet Cellana grata. J. Mollus. Stud. 80 (4), 456-459, http://dx.doi.org/10.1093/mollus/eyu022.
  • [5] Capapé, C., 1986. General data on the diet of Gymnuridae and Mobulidae (Pisces, Selachii). Arch. Inst. Pasteur Tunis 63 (2-3), 241-246.
  • [6] Castro, P., Huber, M. E. (Eds.), 2007. Marine Biology. McGraw-Hill Higher Education, New York, 480 pp.
  • [7] Claudino, M. C., Pessanha, A. L. M., Araújo, F. G., Garcia, A. M., 2015. Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient. Estuar. Coast. Shelf. Sci. 167 (16), 45-55, http://dx.doi.org/10.1016/j.ecss.2015.07.005.
  • [8] Conway-Cranos, L., Kiffney, P., Banas, N., Plummer, M., Naman, S., MacCready, P., Bucci, J., Ruckelshaus, M., 2015. Stable isotopes and oceanographic modeling reveal spatial and trophic connectivity among terrestrial, estuarine, and marine environments. Mar. Ecol.-Prog. Ser. 533, 15-28, http://dx.doi.org/10.3354/meps11318.
  • [9] Cyrus, D. P., Blaber, S. J. M., 1982. Mouthpart structure and function and the feeding mechanisms of Gerres (Teleostei). Zool. Afr. 17 (3), 117-121, http://dx.doi.org/10.1080/02541858.1982.11447790.
  • [10] Day, J. W., Crump, B. C., Kemp, W. M., Yáñez-Arancibia, A. (Eds.), 2012. Estuarine Ecology. Wiley-Blackwell, New Jersey, 550 pp.
  • [11] Deegan, L. A., Garritt, R. H., 1997. Evidence for spatial variability in estuarine food webs. Mar. Ecol.-Prog. Ser. 147 (1-3), 31-47, http://dx.doi.org/10.3354/meps147031.
  • [12] Deniro, M. J., Epstein, S., 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45 (3), 341-351, http://dx.doi.org/10.1016/0016-7037(81)90244-1.
  • [13] Doi, H., Chang, K. H., Obayashi, Y., Yoshihara, M., Shime, M., Yamamoto, T., Nishibe, Y., Nakano, S., 2008. Attached microalgae contribute to planktonic food webs in bays with fish and pearl oyster farms. Mar. Ecol.-Prog. Ser. 353 (01), 107-113, http://dx.doi.org/10.3354/meps07202.
  • [14] Douglass, J. G., Emmett Duffy, J., Canuel, E. A., 2011. Food web structure in a Chesapeake Bay eelgrass bed as determined through gut contents and 13C and 15N isotope analysis. Estuar. Coast. 34 (4), 701-711, http://dx.doi.org/10.1007/s12237-010- 9356-4.
  • [15] Duggins, D. O., Eckman, J. E., 1997. Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Mar. Biol. 128 (3), 489-495, http://dx.doi.org/10.1007/s002270050115.
  • [16] Fry, B., Sherr, E. B., 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contr. Mar. Sci. 27, 13-47.
  • [17] Golléty, C., Riera, P., Davoult, D., 2010. Complexity of the food web structure of the Ascophyllum nodosum zone evidenced by a δ13C and δ15N study. J. Sea Res. 64 (3), 304-312, http://dx.doi.org/10.1016/j.seares.2010.04.003.
  • [18] Hill, J. M., McQuaid, C. D., Kaehler, S., 2006. Biogeographic and nearshore-offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Mar. Ecol.-Prog. Ser. 318, 63-73, http://dx.doi.org/10.3354/meps318063.
  • [19] Huang, M., 2004. Study on feeding habit and nutrient level of Portunus argentatus, P. sanguinolentus and Charybdis feriatu in Fujian sea area. J. Oceanogr. Taiwan Strait 23 (2), 159-166, (in Chinese).
  • [20] Huang, L., Zhang, Y., Pan, J., Wu, Y., Cui, Y., 2008. Food web of fish in Xiamen eastern waters. J. Oceanogr. Taiwan Strait 27 (1), 64-73, (in Chinese).
  • [21] Jacobsen, I. P., Johnson, J. W., Bennett, M. B., 2009. Diet and reproduction in the Australian butterfly ray Gymnura australis from northern and north-eastern Australia. J. Fish Biol. 75 (10), 2475-2489, http://dx.doi.org/10.1111/j.1095-8649.2009.02432.x.
  • [22] Jansson, B. O., 1988. Coastal-Offshore Ecosystem Interactions. Springer-Verlag, Berlin, 367 pp.
  • [23] Jiang, W., Meng, T., Chen, R., Sheng, W., 1998. Diet of Charybdis japonica (A. Miline-Edwards) and Portunus trituberculatus (Miers) in the Bohai Sea. Mar. Fish. Res. 19 (1), 53-59, (in Chinese).
  • [24] Kaehler, S., Pakhomov, E. A., McQuaid, C. D., 2000. Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar. Ecol.-Prog. Ser. 208, 13-20, http://dx.doi.org/10.3354/meps208013.
  • [25] Kang, C. K., Choy, E. J., Son, Y., Lee, J. Y., Kim, J. K., Kim, Y., Lee, K. S., 2008. Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Mar. Biol. 153 (6), 1181-1198, http://dx.doi.org/10.1007/s00227-007-0890-y.
  • [26] Li, K., Tan, Y., Huang, L., Yin, J., Song, X., 2012. Feeding of planktonic copepods in the Pearl River Estuary. J. Trop. Oceanogr. 31 (6), 90-96, (in Chinese), https://doi.org/10.3969/j.issn.1009-5470.2012.06.014.
  • [27] Little, C., Kitching, J. A. (Eds.), 1996. The Biology of Rocky Shores. Oxford University Press, New York, 235 pp.
  • [28] Lu, J., Cai, R., Qian, Z., Wei, S., Qian, J., 1996. Stomach contents of the several barnacles in Zhoushan waters. Dongahi Mar. Sci. 14 (1), 28-35, (in Chinese).
  • [29] Lu, L., Goh, B. P. L., Chou, L. M., 2002. Effects of coastal reclamation on riverine macrobenthic infauna (Sungei Punggol) in Singapore. J. Aquat. Ecosyst. Stress Recov. 9 (2), 127-135, http://dx.doi.org/10.1023/A:1014483804331.
  • [30] Markel, R. W., Shurin, J. B., 2015. Indirect effects of sea otters on rockfish (Sebastes spp.) in giant kelp forests. Ecology 96 (11), 2877-2890, http://dx.doi.org/10.1890/14-0492.1.
  • [31] McCutchan, J. H., Lewis, W. M., Kendall, C., McGrath, C. C., 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102 (2), 378-390, http://dx.doi.org/10.1034/j.1600-0706.2003.12098.x.
  • [32] Minagawa, M., Wada, E., 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48 (5), 1135-1140, http://dx.doi.org/10.1016/0016-7037(84)90204-7.
  • [33] Mittelbach, G. G., Osenberg, C. W., 1993. Stage-structured interactions in bluegill: consequences of abult resource variation. Ecology 74 (8), 2381-2394, http://dx.doi.org/10.2307/1939589.
  • [34] Nakano, S., Murakami, M., 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. U.S.A. 98 (1), 166-170, http://dx.doi.org/10.1073/pnas.98.1.166.
  • [35] Nava, H., Ramirez-Herrera, M. T., Figueroa-Camacho, A. G., Villegas- Sanchez, B. M., 2014. Habitat characteristics and environmental factors related to boring sponge assemblages on coral reefs near populated coastal areas on the Mexican Eastern Pacific coast. Mar. Biodivers. 44 (1), 45-54, http://dx.doi.org/10.1007/s12526-013-0182-3.
  • [36] Ning, J., Du, F., Wang, X., Gu, Y., Wang, L., Li, Y., 2016. Feeding habits of mantis shrimp based on stable isotope analysis. J. Fish. China 40 (6), 903-910, (in Chinese), https://doi.org/10.11964/jfc.20151110177.
  • [37] Ouisse, V., Riera, P., Migne, A., Leroux, C., Davoult, D., 2012. Food web analysis in intertidal Zostera marina and Zostera noltii communities in winter and summer. Mar. Biol. 159 (1), 165-175, http://dx.doi.org/10.1007/s00227-011-1796-2.
  • [38] Peterson, B. J., Fry, B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18 (1), 293-320, http://dx.doi.org/10.1146/annurev.es.18.110187.001453.
  • [39] Phillips, D. L., Gregg, J. W., 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136 (2), 261-269, http://dx.doi.org/10.1007/s00442-003-1218-3.
  • [40] Polis, G. A., Strong, D. R., 1996. Food web complexity and community dynamics. Am. Nat. 147 (5), 813-846, http://dx.doi.org/10.1086/285880.
  • [41] Polis, G. A., Anderson, W. B., Holt, R. D., 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28 (1), 289-316, http://dx.doi.org/10.1146/annurev.ecolsys.28.1.289.
  • [42] Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83 (3), 703-718, http://dx.doi.org/10.2307/3071875.
  • [43] Raje, S. G., 2003. Some aspects of biology of four species of rays off Mumbai water. Indian J. Fish. 50 (1), 89-96.
  • [44] Randall, J. E., 1965. Grazing effect on sea grasses by herbivorous reef fishes in the West Indies. Ecology 46 (3), 255-260.
  • [45] Rooney, N., McCann, K., Gellner, G., Moore, J. C., 2006. Structural asymmetry and the stability of diverse food webs. Nature 442 (7100), 265-269, http://dx.doi.org/10.1038/nature04887.
  • [46] Savage, C., Thrush, S. F., Lohrer, A. M., Hewitt, J. E., 2012. Ecosystem services transcend boundaries: Estuaries provide resource subsidies and influence functional diversity in coastal benthic communities. PLoS ONE 7 (8), e42708, http://dx.doi.org/10.1371/journal.pone.0042708.
  • [47] Schaal, G., Riera, P., Leroux, C., 2010. Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotopes and chemical assays. J. Sea Res. 63 (1), 24-35, http://dx.doi.org/10.1016/j.seares.2009.09.002.
  • [48] Selleslagh, J., Blanchet, H., Bachelet, G., Lobry, J., 2015. Feeding habitats, connectivity and origin of organic matter supporting fish populations in an estuary with a reduced intertidal area assessed by stable isotope analysis. Estuar. Coast. 38 (5), 1431-1447, http://dx.doi.org/10.1007/s12237-014-9911-5.
  • [49] Takai, N., Yorozu, A., Tanimoto, T., Hoshika, A., Yoshihara, K., 2004. Transport pathways of microphytobenthos-originating organic carbon in the food web of an exposed hard bottom shore in the Seto Inland Sea, Japan. Mar. Ecol.-Prog. Ser. 284 (1), 97-108, http://dx.doi.org/10.3354/meps284097.
  • [50] Vander Zanden, M. J., Rasmussen, J. B., 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80 (4), 1395-1404, http://dx.doi.org/10.1890/0012-9658(1999)080[1395:pccana]2.0.co;2.
  • [51] Wada, Y., Iwasaki, K., Yusa, Y., 2013. Changes in algal community structure via density- and trait-mediated indirect interactions in a marine ecosystem. Ecology 94 (11), 2567-2574, http://dx.doi.org/10.1890/12-0725.1.
  • [52] Wahyudi, A. J., Wada, S., Aoki, M., Hama, T., 2013. Stable isotope signature and pigment biomarker evidence of the diet sources of Gaetice depressus (Crustacea: Eubrachyura: Varunidae) in a boulder shore ecosystem. Plankton Benthos Res. 8 (2), 55-67, http://dx.doi.org/10.3800/pbr.8.55.
  • [53] Wai, T.C., Ng, J. S. S., Leung, K. M. Y., Dudgeon, D., Williams, G. A., 2008. The source and fate of organic matter and the significance of detrital pathways in a tropical coastal ecosystem. Limnol. Oceanogr. 53 (4), 1479-1492, http://dx.doi.org/10.4319/lo.2008.53.4.1479.
  • [54] Wang, J., Qiu, S., 1986. On the feeding habit of Sardinella Aurita val. in South Fujian-East Guangdong coastal waters. J. Oceanogr. Taiwan Strait 5 (1), 86-93, (in Chinese).
  • [55] Xia, Z., Zheng, Z., Lin, J., 2005. Integrated analysis of the marine geological environment and hazards in the Dapeng Bay. Geol. China 32 (1), 148-154, (in Chinese).
  • [56] Yu, J., Chen, P., Feng, X., 2016. Food habits and trophic levels for 4 species of economical shrimps in the Pearl River estuary shallow waters. J. South. Agric. 47 (5), 736-741, (in Chinese), https://doi.org/10.3969/j.issn.2095-1191.2016.05.736.
  • [57] Zhang, S., Sun, X., Wang, W., Huang, R., Lai, Y., Liu, Y., Zhu, L., Song, T., Jin, X., Zhang, H., 2013. Features of coastal landforms in Dapeng Peninsula of Shenzhen, China. Trop. Geogr. 33 (6), 647-658, (in Chinese), https://doi.org/10.13284/j.cnki.rddl.002475.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f7832c2-beef-4afe-bb0d-cd1decd41de0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.