Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To comprehensively investigate the diversity of a chamfer technology and a convex roll technology under the same soft reduction process (i.e., section size, reduction amount, casting speed and solid fraction), a three-dimensional mechanical model was developed to investigate the effect of the chamfer profile and roll surface profile on the deformation behavior, cracking risk, stress concentration and reduction force of as-cast bloom during the soft reduction process. It was found that a chamfer bloom and a convex roll can both avoid the thicker corner of the as-cast bloom solidified shell, and significantly reduce reduction force of the withdrawal and straightening units. The convex profile of roll limits lateral spread along bloom width direction, therefore it forms a greater deformation to the mushy zone of as-cast bloom along the casting direction, the tensile strain in the brittleness temperature range (BTR) can obviously increase to form internal cracks. The chamfer bloom is much more effective in compensating the solidification shrinkage of mushy zone. In addition, chamfer bloom has a significant decrease of tensile strain in the brittleness temperature range (BTR) areas, which is expected to greatly reduce the risk of internal cracks.
Wydawca
Czasopismo
Rocznik
Tom
Strony
819--829
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
- Tsinghua University, School of Materials Science and Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
autor
- Tsinghua University, School of Materials Science and Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
autor
- Jiangsu Changqiang Iron and Steel Corp., Ltd., Jiangsu 214500, China
Bibliografia
- [1] H. Bhadeshia, Prog. Mater. Sci. 57, 304 (2012).
- [2] Q. Dong, J. Zhang, B. Wang, X. Zhao, J. Mater. Process. Technol. 81, 238 (2016).
- [3] K. Liu, Q. Sun, J. Zhang, C. Wang, Metall. Res. Technol. 113, 504 (2016).
- [4] S. Luo, M. Zhu, C. Ji, Ironmak. Steelmak. 41, 233 (2014).
- [5] N. Zong, H. Zhang, Y. Liu, Z. Lu, Ironmak. Steelmak. 46, 872 (2019).
- [6] S. Ogibayashi, M. Uchimura, K. Isobe, H. Maede, Y. Nishihara, S. Sato, Proc. of 6th Int. Iron and Steel Cong, ISIJ, Tokyo, 271 (1990).
- [7] H. M. Chang, S. O. Kyung, D. L. Joo, J. L. Sung, L. Youngseog, ISIJ Int. 52, 1266 (2012).
- [8] J. Zhao, L. Liu, W. Wang, H. Lu, Ironmak. Steelmak. 46, 227 (2017).
- [9] N. Zong, H. Zhang, Y. Liu, Z. Lu, Metall. Res. Technol. 116, 310 (2019).
- [10] N. Zong, H. Zhang, L. Wang, Z. Lu, Metall. Res. Technol. 116, 608 (2019).
- [11] C. Li, B. Thomas, Metall. Mater. Trans. B. 35B, 1151 (2004).
- [12] B. Li, H. Ding, Z. Tang, Int. J. Miner. Metall. Mater. 19, 21 (2012).
- [13] K. O. Lee, S. K. Hong, Y. K. Kang, Int. J. Automot. Technol. 10, 697 (2009).
- [14] K. Demons, G. C. Lorraine, S. A. Taylor, Mater. Eng. Perform. 16, 592 (2007).
Uwagi
1. The present work is financially supported by The National Key Research and Development Program of China No. 2017YFB1103700. The authors are grateful to Senior Engineer Zhifang Lu in Xingtai Iron and Steel Corp., Ltd. For their help to conduct the plant trial.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f6f4d37-2423-47fe-9abc-f49a32b6709f