Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this work is to evaluate the removal of methylene blue dye by bio-polishing sludge-based adsorbents. The adsorbents were characterized according to the specific surface area, pH upon the treatment and surface functional groups. The adsorption of dye was carried out at room temperature, and the adsorption data were analyzed using the isotherm and kinetics models. The bio-polishing sludge is rich in ash content, and the presence of surface functional groups varied with the treatment strategies. The specific surface area of adsorbents is between 7.25 and 20.8 m2 /g. Results show that the maximum removal of methylene blue by sludge adsorbents was observed to have the following order: untreated sludge (SR) > zinc chloride-treated (SZ) > microwave-dried (SW) = potassium carbonate-treated (SK) > acid-washed (SH). The maximum adsorption capacities for SR and SZ as predicted by the Langmuir model are 170 and 135 mg/g, respectively. Although SR demonstrates a higher maximum removal than SZ, the latter exhibits greater removal intensity and rate constant even at high dye concentration. The bio-polishing sludge is a promising adsorbent for dye wastewater treatment.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--21
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Universiti Teknologi Malaysia, Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research (ISI-SIR), 81310 UTM Johor Bahru, Malaysia
autor
- Universiti Teknologi Malaysia, Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research (ISI-SIR), 81310 UTM Johor Bahru, Malaysia
autor
- Universiti Teknologi Malaysia, Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research (ISI-SIR), 81310 UTM Johor Bahru, Malaysia
Bibliografia
- 1. MPOB. (2008). Number of mills and capacity. Retrieved August 10, 2014, from http://econ.mpob.gov.my/economy/annual/stat2008/ei_processing08.htm
- 2. Wu, T.Y., Mohammad, A.W., Jahim, J.M. & Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J. Environ. Manage. 91(7), 1467–1490. DOI: 10.1016/j.jenvman.2010.02.008.
- 3. Ujang, Z., Salmiati & Salim, M.R. (2010). Microbial biopolymerization production from palm oil mill effluent. In M. Elnashar (Ed.), Biopolymers (pp. 473–494). Shanghai: InTech.
- 4. Rupani, P.F., Singh, R.P., Ibrahim, M.H. & Esa, N. (2010). Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice. World Appl. Sci. J. 11(1), 70–81.
- 5. Gobi, K., Mashitah, M.D. & Vadivelu, V.M. (2011). Adsorptive removal of methylene blue using novel adsorbent from palm oil mill effluent waste activated sludge: Equilibrium, thermodynamics and kinetic studies. Chem. Eng. J. 171(3), 1246–1252. DOI:10.1016/j.cej.2011.05.036.
- 6. Onyia, C.O., Uyub, A.M., Akunna, J.C., Norulaini, N.A. & Omar, A.K.M. (2001). Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification. Water Sci. Technol. 44(10), 157–162.
- 7. Smith, K.M., Fowler, G.D., Pullket, S. & Graham, N.J.D. (2009). Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res. 43(10), 2569–2594. DOI: 10.1016/j.watres.2009.02.038.
- 8. Zaini, M.A.A., Zakaria, M., Setapar, S.H.M. & Yunus, M.A.C. (2013). Sludge-adsorbents from palm oil mill effluent for methylene blue removal. J. Environ. Chem. Eng. 1(4), 1091–1098. DOI: 10.1016/j.jece.2013.08.026.
- 9. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part 1. Solid. J. Am. Chem. Soc. 38(11), 2221–2295. DOI: 10.1021/ja02268a002.
- 10. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403. DOI: 10.1021/ja02242a004.
- 11. Freundlich, H.M.F. (1906). About the adsorption in solution (Uber die adsorption in losungen). Z. Phys. Chem. 57A, 385–470.
- 12. Redlich, O. & Peterson, D.L. (1959). A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024. DOI: 10.1021/j150576a611.
- 13. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances (Kungliga svenska vetenskapsakademiens). Handlingar 24, 1–39.
- 14. Ho, Y.S. & McKay, G. (1998). A comparison of chemisorption kinetics models applied to pollutant removal on various sorbents. Process Saf. Environ. 76(4), 332–340. DOI: 10.1205/095758298529696.
- 15. Zaini, M.A.A., Yoshihara, K., Okayama, R., Machida, M. & Tatsumoto, H. (2008). Effect of out-gassing of ZnCl2-activated cattle manure compost (CMC) on adsorptive removal of Cu(II) and Pb(II) ions. TANSO 234, 220–226.
- 16. Zaini, M.A.A., Okayama, R. & Machida, M. (2009). Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. J. Hazard. Mater. 170(2–3), 1119–1124. DOI: 10.1016/j.jhazmat.2009.05.090.
- 17. Ketcha, J.M., Dina, D.J.D., Ngomo, H.M. & Ndi, N.J. (2012). Preparation and characterization of activated carbons obtained from maize cobs by zinc chloride activation. Am. Chem. Sci. J. 2(4), 136–160. DOI: 10.9734/ACSJ/2012/1806.
- 18. Zaini, M.A.A., Cher, T.Y., Zakaria, M., Kamaruddin, M.J., Setapar S.H.M. & Yunus M.A.C. (2014). Palm oil mill effluent sludge ash as adsorbent for methylene blue dye removal. Desalin. Water Treat. 52(19–21), 3654–3662. DOI: 10.1080/19443994.2013.85404.
- 19. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu, H. & Wu, D. (2012). Adsorption of methylene blue from aqueous solution by graphene. Coll. Surf. B Biointerfaces 90, 197–203. DOI: 10.1016/j.colsurfb.2011.10.019.
- 20. Liao, P., Ismael, Z.M., Zhang, W., Yuan, S., Tong, M., Wang, K. & Bao, J. (2012). Adsorption of dyes from aqueous solution by microwave modified bamboo charcoal. Chem. Eng. J. 195–196, 339–346. DOI: 10.1016/j.cej.2012.04.092.
- 21. Liu, Z. & Liu, Y. (2015). Structure and properties of forming adsorbents prepared from different particle sizes of coal fly ash. Chin. J. Chem. Eng. 23(1), 290–295. DOI: 10.1016/j.cjche.2014.09.037.
- 22. Foo, K.Y. & Hameed, B.H. (2012). Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation. Chem. Eng. J. 180, 66–74. DOI: 10.1016/j.cej.2011.11.002.
- 23. Zaini, M.A.A., Ngiik, T.C., Kamaruddin, M.J., Setapar, S.H.M. & Yunus M.A.C. (2014). Zinc chloride-activated waste carbon powder for decolourization of methylene blue. J. Tek. Sci. Eng. 67(2), 37–44. DOI: 10.11113/jt.v67.2731.
- 24. Theydan, S.K. & Ahmed, M.J. (2012). Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics and thermodynamic studies. J. Anal. Appl. Pyrol. 97, 116–122. DOI: 10.1016/j.jaap.2012.05.008.
- 25. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide and carbon nanotubes. Chem. Eng. Res. Des. 91(2), 361–368. DOI: 10.1016/j.cherd.2012.07.007.
- 26. Ahmed, M.J. & Dhedan, S.K. (2012). Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilibr. 317, 9–14. DOI: 10.1016/j.fluid.2011.12.026.
- 27. Foo, K.Y. & Hameed, B.H. (2012). Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue. Fuel Process. Technol. 99, 103–109. DOI: 10.1016/j.fuproc.2012.01.031.
- 28. Foo, K.Y. & Hameed, B.H. (2012). Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: Influence of operational parameters. Bioresour. Technol. 103(1), 398–404. DOI: 10.1016/j.biortech.2011.09.116.
- 29. Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D. & Song, X.W. (2013). Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresour. Technol. 136, 437–443. DOI: 10.1016/j.biortech.2013.03.048.
- 30. Foo, K.Y. & Hameed, B.H. (2012). Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresour. Technol. 111, 425–432. DOI: 10.1016/j.biortech.2012.01.141.
- 31. Chiu, K.L. & Ng, D.H.L. (2012). Synthesis and characterization of cotton-made activated carbon fiber and its adsorption of methelyne blue in water treatment. Biomass Bioenerg. 46, 102–110. DOI: 10.1016/j.biombioe.2012.09.023. [Crossref]
- 32. Foo, K.Y. & Hameed, B.H. (2012). Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance. Chem. Eng. J. 184, 57–65. DOI: 10.1016/j.cej.2011.12.084.
- 33. Malina, J. & Radenovic, A. (2014). Kinetic aspects of methylene blue adsorption on blast furnace sludge. Chem. Biochem. Eng. Q. 28(4), 491–498. DOI: 10.15255/CABEQ.2014.19366.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f6c3c08-6cdf-4684-9255-6c9cf73d3448