PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A large array of inselbergs on a continuation of the sub-Cambrian peneplain in the Baltic Basin : evidence from seismic data, Wes ern Lithuania

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sub-Cambrian peneplain is well-known in Scandinavia, outcropping in Finland, Sweden and Norway. This peneplain is thought to have formed within the Baltic Sea region in Cryogenian and Ediacaran/early Cambrian time, when Baltica, a part of Rodinia for most of that time, experienced tectonic stability, strong sheet-wash weathering and glaciations. While the peneplain outcrops in the Baltic Shield region, it continues beneath Phanerozoic strata of the Baltic Basin. This buried part of the sub-Cambrian peneplain is known to have several isolated inselbergs. We interpret newly acquired 2D and 3D seismic data and show that the sub-Cambrian peneplain extends at least to Western Lithuania where the palaeotopography of the Precambrian basement changes its character from peneplain-like flat to hilly terrain with a large array of inselbergs. Even though some of the largest features of this palaeotopography have been known before, they are here demonstrated for the first time within the regional context of the sub-Cambrian peneplain.
Rocznik
Strony
art. no. 2
Opis fizyczny
Bibliogr. 67 poz., fot., map., wykr.
Twórcy
  • Vilnius University, Faculty of Chemistry and Geosciences, Institute of Geosciences, M.K. Čiurlionio str. 21/27, 03101 Vilnius, Lithuania
  • Vilnius University, Faculty of Chemistry and Geosciences, Institute of Geosciences, M.K. Čiurlionio str. 21/27, 03101 Vilnius, Lithuania
  • Geobaltic UAB, Skroblų str. 27, 03140 Vilnius, Lithuania
  • Vilnius University, Faculty of Chemistry and Geosciences, Institute of Geosciences, M.K. Čiurlionio str. 21/27, 03101 Vilnius, Lithuania
Bibliografia
  • 1. Ani, T., Meidla, T., 2020. Rock head elevation model of northern Estonia. Estonian Journal of Earth Sciences, 69: 109-120.
  • 2. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research, 259: 5-33.
  • 3. Bonow, J.M., Lidmar-Bergström, K., Näslund, J., 2003. Palaeosurfaces and major valleys in the area of the Kjølen Mountains, southern Norway - consequences of up lift and climatic change. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 57: 83-101.
  • 4. Brangulis, A.J., Kanevs, S., 2002. Tectonics of Latvia (in Latvian). Valsts geologijas dienests, Riga.
  • 5. Brangulis, A.P., Kanev, S.V., Margulis, L.S., Pomerantseva, R.A., 1993. Geology and hydrocarbon prospects of the Paleozoic in the Baltic region. Geological Society, London, Petroleum Geology Conference series, 4: 651-656.
  • 6. Brown, A.R., 2011. Interpretation of three-dimensional seismic data, 7th edition. Society of Exploration Geophysicists and American Association of Petroleum Geologists. Dallas, Texas, USA.
  • 7. Butt, C.R.M., Lintern, M.J., Anand, R.R., 2000. Evolution of regoliths and landscapes in deeply weathered terrain - implications for geochemical exploration. Ore Geology Reviews, 16: 167-183.
  • 8. Claesson, S., Bogdanova, S.V., Bibikova, E.V., Gorbatschev, R., 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics, 339: 1-18.
  • 9. Cocks, L.R.M., Torsvik, T.H., 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews, 72: 39-66.
  • 10. Dadlez, R., Pokorski, J., Modliński, Z. (ed.), 2007. Geological map of the western and central part of the Baltic depression without Permian and younger formations. Państwowy Instytut Geologiczny, Warszawa.
  • 11. Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A., 2016. Introduction: an atlas of submarine glacial landforms. Geological Society of London Memoirs, 46: 3-14.
  • 12. Dörr, W., Belka, Z., Marheine, D., Schastok, J., Valverde-Vaquero, P., Wiszniewska, J., 2002. U-Pb and Ar-Ar geochronology of anorogenic granite magmatism of the Mazury complex, NE Poland. Precambrian Research, 119: 101-120.
  • 13. Elvhage, C., Lidmar-Bergström, K., 1987. Some working hypotheses on the geomorphology of Sweden in the light of a new relief map. Geografiska Annaler: Series A, Physical Geography, 69: 343-358.
  • 14. Flodén, T., Bjerkéus, M., Tuuling, I., Eriksson, M., 2001. A Silurian reefal succession in the Gotland area, Baltic Sea. GFF, 123: 137-152.
  • 15. Gabrielsen, R.H., Nystuen, J.P., Jarsve, E.M., Lundmark, A.M., 2015. The sub-Cambrian peneplain in southern Norway: its geological significance and its implications for post-Caledonian faulting, uplift and denudation. Journal of the Geological Society, 172: 777-791.
  • 16. Estonian Land Board, Geological Survey of Estonia, 2020. Geological Base Map. https://xgis.maaamet.ee/xgis2/page/app/ geoloogia50k
  • 17. Hunter, J.D., 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering, 9: 90-95.
  • 18. Jaanusson, V., 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6: 11-34.
  • 19. Japsen, P., Green, P.F., Chalmers, J.A., Bonow, J.M., 2018. Mountains of southernmost Norway: uplifted Miocene peneplains and re-exposed Mesozoic surfaces. Journal of the Geological Society, 175: 721-741.
  • 20. Jarsve, E.M., Krřgli, S.O., Etzelmüller, B, Gabrielsen, R.H., 2014. Automatic identification of topographic surfaces related to the sub-Cambrian peneplain (SCP) in southern Norway - Surface generation algorithms and implications. Geomorphology, 211: 89-99.
  • 21. Kaminskas, D., Michelevičius, D., Blažauskas, N., 2015. New evidence of an early Pridoli barrier reef in the southern part of the Baltic Silurian basin based on three-dimensional seismic survey, Lithuania. Estonian Journal of Earth Sciences, 64: 47-55.
  • 22. Kanev, S., Lauritzen, O., Schmitz, U., 2001. Latvia's first onshore round - its potential and perspectives. Oil Gas European Magazine, 3: 19-23.
  • 23. Keller, C.B., Husson, J.M., Mitchell, R.N., Bottke, W.F., Gernon, T.M., Boehnke, P., Bell, E.A., Swanson-Hysell, N.L., Petersj, S.E., 2019. Neoproterozoic glacial ori gin of the Great Unconformity. Proceedings of the National Academy of Sciences, 116: 1136-1145.
  • 24. Konsa, M.K., Puura, V., 1999. Provenance of zircon of the lowermost sedimentary cover, Estonia, East European Craton. Bulle - tin of the Geological Society of Finland, 71: 253-273.
  • 25. Levendal, T.C., Lehnert, O., Sopher, D., Erlström, M., Juhlin, C., 2019. Ordovician carbonate mud mounds of the Baltoscandian Basin in time and space - a geophysical approach. Palaeoge- ography, Palaeoclimatology, Palaeoecology, 535: 109345.
  • 26. Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia: Asynthesis. Precambrian Research, 160: 179-210.
  • 27. Lidmar-Bergström, K., 1988. Denudation surfaces of a shield area in South Sweden. Geografiska Annaler: Series A, Physical Geography, 70: 337-350.
  • 28. Lidmar-Bergström, K., 1993. Denudation surfaces and tectonics in the southernmost part of the Bal tic Shield. Precambrian Research, 64: 337-345.
  • 29. Lidmar-Bergström, K., 1995. Relief and saprolites through time on the Baltic Shield. Geomorphology, 12: 45-61.
  • 30. Lidmar-Bergström, K., Olvmo, M., 2015. Plains, steps, hilly relief and valleys in Northern Sweden - review, interpretations and implications for conclusions on Phanerozoic tectonics. Research paper C838. Geological Survey of Sweden, Uppsala.
  • 31. Lidmar-Bergström, K., Olsson, S., Olvmo, M., 1997. Palaeosurfaces and associated saprolites in southern Sweden. Geological Society Special Publications, 120: 95-124.
  • 32. Lidmar-Bergström, K., Bonow, J.M., Japsen, P., 2013. Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change, 100: 153-171.
  • 33. Lidmar-Bergström, K., Olvmo, M., Bonow, J.M., 2017. The South Swedish Dome: a key structure for identification of peneplains and conclusions on Phanerozoic tectonics of an ancient shield. GFF, 139: 244-259.
  • 34. Liivamägi, S., Somelar, P., Mahaney, W.C., Kirs, J., Vircava, I., Kirsimäe, K., 2014. Late Neoproterozoic Bal tic paleosol: intense weathering at high latitude? Geology, 42: 323-326.
  • 35. Lorentzen, S., Augustsson, C., Nystuen, J.P., Berndt, J., Jahren, J., Schovsbo, N.H., 2018. Provenance and sedimentary processes controlling the formation of lower Cambrian quartz arenite along the southwestern margin of Baltica. Sedimentary Geology, 375: 203-217.
  • 36. Lundmark, A.M., Lamminen, J., 2016. The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia. Precambrian Research, 275: 197-208.
  • 37. Matyja, H., 2006. Stratigraphy and facies development of Devonian and Carboniferous deposits in the Pomeranian Basin and in the western part of the Baltic Basin and palaeogeography of the northern TESZ during Late Palaeozoic times (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 79-122.
  • 38. Meshcherskii, A.A., Kharin, G.S., Chegesov, V.K., 2003. Precambrian weathering crust of the crystalline basement in the Kaliningrad District. Lithology and Mineral Resources, 38: 48-54.
  • 39. Migoń, P., Lidmar-Bergström, K., 2002. Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record. Catena, 49: 25-40.
  • 40. Modliński, Z., Jacyna, J., Kanev, S., Khubldikoy, A., Laskova, L., Laskovas, J., Lendzion, K., Mikazane, I., Pomeranceva, R., 1999. Palaeotectonic evolution of the Bal tic Syneclise during the Early Palaeozoic as documented by palaeo thickness maps. Geological Quarterly, 43 (3): 285-296.
  • 41. Molenaar, N., Vaznyté, J., Šliaupa, S., 2019. Aridisols in the Southern Permian Basin of Lithuania: a key to understanding clay cement distribution. International Journal of Earth Sciences, 108: 2391-2406.
  • 42. Motuza, G., Čečys, A., Kotov, A.B., Salnikova, E.B., 2006. The Żemaicią Naumiestis granitoids: new evidences for Mesoproterozoic magmatism in Western Lithuania. GFF, 128: 243-254.
  • 43. Motuza, G., Motuza, V., Salnikova, E., Kotov, A., 2008. Extensive charnockitic-granitic magmatism in the crystalline crust of West Lithuania. Geologija (Vilnius), 50: 1-16.
  • 44. Nenonen, K., Johansson, P., Sallasmaa, O., Sarala, P., Palmu, J.P., 2018. The inselberg landscape in Finnish Lapland: a morphological study based on the LiDAR data interpretation. Bulletin of the Geological Society of Finland, 90: 239-256.
  • 45. Nielsen, A.T., Ahlberg, P., 2019. The Miaolingian, a new name for the ‘Middle' Cambrian (Cambrian Series 3): identification of lower and upper boundaries in Baltoscandia. GFF, 141: 162-173.
  • 46. Nielsen, A.T., Schovsbo, N.H., 2011. The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth-Science Reviews, 107: 207-310.
  • 47. Nielsen, A.T., Schovsbo, N.H., 2015. The regressive Early-Mid Cambrian ‘Hawke Bay Event' in Baltoscandia: epeirogenic uplift in concert with eustasy. Earth-Science Reviews, 151: 288-350.
  • 48. Paškevičius, J., 1997. The Geology of the Baltic Republics. Geological Survey of Lithuania, Vilnius.
  • 49. Paszkowski, M., Budzyń, B., Mazur, S., Slama, J., Shumlyanskyy, L., Środoń, J., Dhuime, B., Kędzior, A., Liivamägi, S., Pisarzowska, A., 2019. Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus. Precambrian Research, 331: 105352.
  • 50. Peters, S.E., Gaines, R.R., 2012. Formation of the ‘Great Unconformity' as a trigger for the Cambrian explosion. Nature, 484: 363-366.
  • 51. Phillips, J.D., 2002. Erosion, isostatic response, and the missing peneplains. Geomorphology, 45: 225-241.
  • 52. Poprawa, P., 2019. Geological setting and Ediacaran - Palaeozoic evolution of the western slope of the East European Craton and adjacent regions. Annales Societatis Geologorum Poloniae, 89: 347-380.
  • 53. Poprawa, P., Šliaupa, S., Stephenson, R., Lazauskiené, J., 1999. Late Vendian-Early Paleozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314: 219-239.
  • 54. Poprawa, P., Krzemińska, E., Pacześna, J., Amstrong, R., 2020. Geochronology of the Volyn volcanic complex at the western slope of the East European Craton - relevance to the Neoproterozoic rifting and the break-up of Rodinia/Pannotia. Precambrian Research, 346: 105817.
  • 55. Sivhed, U., Erlström, M., Bojesen-Koefoed, J.A., Löfgren, A., 2004. Upper Ordovician carbonate mounds on Gotland, central Baltic Sea: distribution, composition and reservoir characteristics. Journal of Petroleum Geology, 27: 115-140.
  • 56. Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M., All, T., 2004. Outlines of the Precambrian basement of Estonia. Proceedings of the Estonian Academy of Sciences. Geology, 53: 149-164.
  • 57. Sopher, D., Juhlin, C., 2013. Processing and interpretation of vintage 2D marine seismic data from the outer Hanö Bay area, Baltic Sea. Journal of Applied Geophysics, 95: 1-15.
  • 58. Sopher, D., Erlström, M., Bell, N., Juhlin, C., 2016. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: New insights from vintage 2D marine seismic data. Tectonophysics, 676: 90-111.
  • 59. Stirpeika, A., 1999. Tectonic evolution of the Baltic Syneclise and local structures in the South Baltic region with respect to their petroleum potential. Geological Survey of Lithuania, Vilnius.
  • 60. Šliaupa, S., Hoth, P., 2011. Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. In: The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES) XIII (eds. J. Harff, S., Björck, P. Hoth). Springer-Verlag, Berlin, Heidelberg.
  • 61. Thybo, H., 2000. Crustal structure and tectonic evolution of the Tornquist Fan region as revealed by geophysical methods. Bulletin of the Geological Society of Denmark, 46: 145-160.
  • 62. Tuuling, I., Flodén, T., 2000. Late Ordovician carbonate buildups and erosional features northeast of Gotland, northern Baltic Sea. GFF, 122: 237-249.
  • 63. Tuuling, I., Flodén, T., 2007. The Ordovician-Silurian boundary beds between Saaremaa and Gotland, Baltic Sea, based on high resolution seismic data. Geological Quarterly, 51 (3): 217-229.
  • 64. Tuuling, I., Flodén, T., 2011. Seismic stratigraphy, architecture and outcrop pattern of the Wenlock-P0idoli sequence offshore Saaremaa, Baltic Sea. Marine Geology, 281: 14-26.
  • 65. Tuuling, I., Flodén, T., 2013. Silurian reefs off Saaremaa and their extension towards Gotland, central Baltic Sea. Geological Magazine, 150: 923-936.
  • 66. Vasilyev, V.A., 1969. Ancient weathering crusts of the crystalline basement in the Southern Baltic region (in Russian). Mintis, Vilnius.
  • 67. VO Tekhnoeksport, 1985. Summarized maps of the Curonian part of the Baltic Sea, scale 1:100000. Graphical appendices (in Russian). Moscow.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f68a449-4bb0-49ed-a6d4-312a474b9ffd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.