Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative studies on variability, phylogenesis, and correlated mutations of neuraminidases from influenza virus type A

Warianty tytułu
Języki publikacji
Neuraminidase (NA) is an important protein for the replication cycle of influenza A viruses. NA is an enzyme that cleaves the sialic acid receptors; this process plays a significant role in viral life cycle. Blocking NA with a specific inhibitor is an effective way to treat the flu. However, some strains show resistance to current drugs. Therefore, NA is the focus for the intense research for new antiviral drugs and also for the explanation of the functions of new mutations. This research focuses on determining the profile of variability and phylogenetic analysis and finding the correlated mutations within a set of 149 sequences of NA belonging to various strains of influenza A virus. In this study, we have used the original programs (Corm, Consensus Constructor, and SSSSg) and also other bioinformatics software. NA proteins are characterized by various levels of variability in different regions, which was presented in detail with the aid of ConSurf. The use of four independent methods to create the phylogenetic trees gave some new data on the evolutionary relationship within the NA family proteins. The search for correlated mutations shows several potentially important correlated positions that were not reported previously to be significant. The use of such an approach can be potentially important and gives new information regarding NA proteins of influenza A virus.
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
  • Faculty of Biological Sciences, University of Zielona Góra, Department of Biochemistry and Bioinformatics, Zielona Góra, Poland
  • Faculty of Biological Sciences, University of Zielona Góra, Department of Biochemistry and Bioinformatics, Zielona Góra, Poland
  • [1] Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 1983; 303:35-40.
  • [2] Varghese JN, Smith PW, Sollis SL, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL, et al. Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 1998; 6:735-46.
  • [3] Liu C, Eichelberger MC, Compans RW, Air GM. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol 1995; 69:1099-106.
  • [4] Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 2004; 78:12665-7.
  • [5] Air GM, Laver WG. The neuraminidase of influenza virus. Proteins 1989; 6:341-56.
  • [6] Shtyrya YA, Mochalova LV, Bovin NV. Influenza virus neuraminidase: structure and function. Acta Nat 2009; 2:26-32.
  • [7] Air GM. Influenza neuraminidase. Influenza Other Resp 2012; 6:245-56.
  • [8] Chong AK, Pegg MS, von Itzstein M. Influenza virus sialidase: effect of calcium on steady-state kinetic parameters. BBA Proteins Struct M 1991; 1077:65-71.
  • [9] Varghese JN, McKimm‐Breschkin JL, Caldwell JB, Kortt AA, Colman PM. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 1992; 14:327-32.
  • [10] Colman PM, Hoyne PA, Lawrence MC. Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J Virol 1993; 67:2972-80.
  • [11] Colman PM. Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 1994; 3:1687-96.
  • [12] Richard M, Ferraris O, Erny A, Barthélémy M, Traversier A, Sabatier M, et al. Combinatorial effect of two framework mutations (E119V and I222L) in the neuraminidase active site of H3N2 influenza virus on resistance to oseltamivir. Antimicrob Agents Chemother 2011; 55:2942-52.
  • [13] Thompson JD, Higgins DG, Gibson TJ. Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci 1994; 10:19-29.
  • [14] Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006; 44:45-9.
  • [15] Amaro RE, Swift RV, Votapka L, Li WW, Walker RC, Bush RM. Mechanism of 150-cavity formation in influenza neuraminidase. Nat Commun 2011; 2:388.
  • [16] Laver WG, Colman PM, Webster RG, Hinshaw VS, Air GM. Influenza virus neuraminidase with hemagglutinin activity. Virology 1984; 137:314-23.
  • [17] Varghese JN, Colman PM, Van Donkelaar A, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci USA 1997; 94:11808-12.
  • [18] Kowarsch A, Fuchs A, Frishman D, Pagel P. Correlated mutations: a hallmark of phenotypic amino acid substitutions. PLoS Comput Biol 2010;6:e1000923.
  • [19] The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res 2015;43: D204-12.
  • [20] Liechti R, Gleizes A, Kuznetsov D, Bougueleret L, Le Mercier P, Bairoch A, et al. OpenFluDB, a database for human and animal influenza virus. Database 2010:baq0040.
  • [21] Vavricka CJ, Li Q, Wu Y, Qi J, Wang M, Liu Y, et al. Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog 2011;7:e1002249.
  • [22] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235-42.
  • [23] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8.
  • [24] Lassmann T, Frings O, Sonnhammer EL. Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res 2009; 37:858-65.
  • [25] Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, et al. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 2011;39:W13-7.
  • [26] Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988; 16:10881-90.
  • [27] Górecki A, Leluk J, Lesyng B. A Java-implementation of a genetic semihomology algorithm (GEISHA), and its applications for analyses of selected protein families. Eur J Biochem 2004; 271:30.
  • [28] Fogtman A, Leluk J, Lesyng B. β-Spectrin consensus sequence construction with variable threshold parameters; verification of usefulness. Bio-Algorithms Med-Syst 2005; 1: 117-20.
  • [29] Górecki A, Leluk J, Lesyng B. Identification and free energy simulations of correlated mutations in proteins. The Ninth Annual International Conference on Research in Computational Molecular Biology, RECOMB 2005, Cambridge MA, USA, 2005. Abstracts.
  • [30] Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington, 2005.
  • [31] Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010; 38: W529-33.
  • [32] Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016; 44: W344-50.
  • [33] Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, et al. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Israel J Chem 2013; 53:199-206.
  • [34] Gajewska E, Leluk J. An approach to sequence similarity significance estimation. Bio-Algorithms Med-Syst 2005; 1:121-4.
  • [35] Perrière G, Gouy M. WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 1996; 78:364-9.
  • [36] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605-12.
  • [37] Filip R, Leluk J. Phylogenetic analysis of M2 proteins from avian and swine influenza A viruses. Asian J Appl Sci Eng 2015; 4:219-48.
  • [38] Bouvier NM, Palese P. The biology of influenza viruses. Vaccine 2008;26: D49-53.
  • [39] Yongkiettrakul S, Nivitchanyong T, Pannengpetch S, Wanitchang A, Jongkaewwattana A, Srimanote P. Neuraminidase amino acids 149 and 347 determine the infectivity and oseltamivir sensitivity of pandemic influenza A/H1N1 (2009) and avian influenza A/H5N1. Virus Res 2013; 175:128-33.
  • [40] Doyle TM, Jaentschke B, Van Domselaar G, Hashem AM, Farnsworth A, Forbes NE, et al. The universal epitope of influenza A viral neuraminidase fundamentally contributes to enzyme activity and viral replication. J Biol Chem 2013; 288:18283-9.
  • [41] Duan S, Govorkova EA, Bahl J, Zaraket H, Baranovich T, Seiler P, et al. Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. Nat Commun 2014; 5:5029.
  • [42] Lv J, Wei L, Yang Y, Wang B, Liang W, Gao Y, et al. Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens. Vet Res 2015; 46:44.
  • [43] Neher E. How frequent are correlated changes in families of protein sequences? Proc Natl Acad Sci USA 1994; 91:98-102.
  • [44] Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R. Evolutionary information for specifying a protein fold. Nature 2005; 437:512-8.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.