Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article explains the mechanics, control strategies and main applications of a new concept which achieves a balance between energy saving and driver comfort. A physical and mathematical model of a suspension system with energy recovery is presented. It shows practical implementation of the BLDC braking system with energy recovery in a horizontal seat suspension and a detailed simulation analysis of their features and performance. The research involves a specific solution, with a specific BLDC motor, and experimental tests on a laboratory stand. The results of the simulation study using a simplified biomechanical model and experimental studies with human participation are presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
321--335
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
Bibliografia
- 1. Akinaga H., 2020, Recent advances and future prospects in energy harvesting technologies, Japanese Journal of Applied Physics, 59, 110201.
- 2. Alhajri I.H., Gadalla M.A., Elazab H.A., 2021, A conceptual efficient design of energy recovery systems using a new energy-area key parameter, Energy Reports, 7, 1079-1090.
- 3. Araujo M., Nicoletti R., 2015, Electromagnetic harvester for lateral vibration in rotating machines, Mechanical Systems and Signal Processing, 52, 685-699.
- 4. Beeby S., Tudor M.J., White N., 2006, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17, R175”R195.
- 5. Bouendeu E., Greiner A., Smith, P., Korvink J., 2011, Design synthesis of electromagnetic vibration-driven energy generators using a variational formulation, Journal of Microelectromechanical Systems, 20, 466-475.
- 6. Bravo R.R.S., De Negri V.J., Oliveira A.A.M., 2018, Design and analysis of a parallel hydraulic - pneumatic regenerative braking system for heavy-duty hybrid vehicles, Applied Energy, 225, 60-77.
- 7. Cipolletta G., Delle Femine A., Gallo D., Luiso M., Landi C., 2021, Design of a stationary energy recovery system in rail transport, Energies, 14, 9, 2560.
- 8. Farghali M., Osman A.I., Mohamed I.M.A., Chen Z., Chen L. et al., Strategies to save energy in the context of the energy crisis: a review, Environmental Chemistry Letters, 21, 2003-2039.
- 9. Fastier-Wooller J.W., Vu T.-H., Nguyen H., Nguyen H.-Q., Rybachuk M., et al., 2022, Multimodal fibrous static and dynamic tactile sensor, ACS Applied Materials and Interfaces, 14, 27317-27327.
- 10. Fathabadi H., 2019, Recovering waste vibration energy of an automobile using shock absorbers included magnet moving-coil mechanism and adding to overall efficiency using wind turbine, Energy, 189, 116274.
- 11. Gabriel-Buenaventura A., Azzopardi B., 2015, Energy recovery systems for retrofitting in internal combustion engine vehicles: A review of techniques, Renewable and Sustainable Energy Reviews, 41, 955-964.
- 12. Godfrey J.A., Sankaranarayanan V., 2018, A new electric braking system with energy regeneration for a BLDC motor driven electric vehicle, Engineering Science and Technology, an International Journal, 21, 4, 704-713.
- 13. Halim M.A., Cho H., Salauddin M., Park J.Y., 2016, A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion, Sensors and Actuators A: Physical, 249, 23-29.
- 14. Hu Y.T., Xue H., Hu H.P., 2013, Piezoelectric power/energy harvesters, [In:] Analysis of Piezoelectric Structures and Devices, Chapter 3, D. Fang, J.Wang, W. Chen (Edit.), De Gruyter: Berlin, Germany, 72-75.
- 15. Jereczek B., Maciejewski I., Krzyżyński T., Królikowski T., 2022, Modeling and simulation of the horizontal seat suspension system under random vibration, Procedia Computer Science, 207, 858-866.
- 16. Jiang J., Liu S., Feng L., Zhao D., 2021, A review of piezoelectric vibration energy harvesting with magnetic coupling based on different structural characteristics, Micromachines, 12, 4, 436.
- 17. Krause P.C., Wasynczuk O., Sudhoff S.D., 2002, Analysis of Electric Machinery and Drive Systems, Wiley-IEEE Press.
- 18. Kim T., 2011, Regenerative braking control of a light fuel cell hybrid electric vehicle, Electric Power Components and Systems, 39, 5, 446-460.
- 19. Li L., Ping X., Shi J., Wang X., Wu X., 2021, Energy recovery strategy for regenerative braking system of intelligent four-wheel independent drive electric vehicles, IET Intelligent Transport Systems, 15, 1, 119-131.
- 20. Liu C., Zhang K., 2021, Research on regenerative braking energy recovery strategy of electric vehicle, Journal of Physics: Conference Series, 2030, 1, 012003.
- 21. Maciejewski I., Blazejewski A., Pecolt S., Krzyzynski T., 2022a, A sliding mode control strategy for active horizontal seat suspension under realistic input vibration, Journal of Vibration and Control, 29, 11-12, 2539–2551.
- 22. Maciejewski I., Błażejewski A., Pecolt S., Królikowski T., 2022b,Multi-body model simulating biodynamic response of the seated human under whole-body vibration, Procedia Computer Science, 207, 227-234.
- 23. Maciejewski I., Błażejewski A., Pecolt S., Krzyżyński T., Zaporski P., 2023, Three-dimensional modelling and parameter identification of the seated human body exposed to random vibration, Journal of Theoretical and Applied Mechanics, 61, 4, 833-845.
- 24. Maciejewski I., Glowinski S., Krzyzynski T., 2014, Active control of a seat suspension with the system adaptation to varying load mass, Mechatronics, 24, 8, 1242-1253.
- 25. Maciejewski I., Zlobinski M., Krzyzynski T., Glowinski S., 2020, Vibration control of an active horizontal seat suspension with a permanent magnet synchronous motor, Journal of Sound and Vibration, 488, 115655.
- 26. Matak M., Solek P., 2013, Harvesting the vibration energy, American Journal of Mechanical Engineering, 7, 438-442.
- 27. Mescia L., Losito O., Prudenzano F., 2015, Innovative Materials and Systems for Energy Harvesting Applications, IGI Global: Hershey, PA, USA, 254-259, 271-272.
- 28. Muscat A., Bhattacharya S., Zhu Y., 2022, Electromagnetic vibrational energy harvesters: A review, Sensors, 22, 15, 5555.
- 29. Naseri F., Farjah E., Ghanbari T., 2017, An efficient regenerative braking system based on battery/supercapacitor for electric, hybrid, and plug-in hybrid electric vehicles with BLDC motor, IEEE Transactions on Vehicular Technology, 66, 5, 3724-3738.
- 30. Onar O.C., Khaligh A., 2012, A novel integrated magnetic structure based DC/DC converter for hybrid battery/ultracapacitor energy storage systems, IEEE Transactions on Smart Grid, 3, 1, 296-307.
- 31. Priya S., Song H., Zhou Y.,Varghese R., Chopra A. et al., 2017, A review on piezoelectric energy harvesting, materials, methods, and circuits, Energy Harvesting and Systems, 4, 1, 3-39.
- 32. Salman W., Qi L., Zhu X., Pan H., Zhang X., et al., 2018, A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles, Energy, 159, 361-372.
- 33. Song Z., Li J., Han X., Xu L., Lu L., et al., 2014, Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles, Applied Energy, 135, 212-224.
- 34. Sudevalayam S., Kulkarni P., 2011, Energy harvesting sensor nodes: Survey and implications, IEEE Communications Surveys and Tutorials, 13, 443-461.
- 35. Taut A., Pop O., Ceuca E., 2013, System for energy recovering with BLDC motor at deceleration momentum, Proceedings of the 36th International Spring Seminar on Electronics Technology, 299-304.
- 36. Toshiyoshi H., Ju S., Honma H., Ji C.-H., Fujita H., 2019, MEMS vibrational energy harvesters, Science and Technology of Advanced Materials, 20, 124-143.
- 37. Ueno T., 2019, Magnetostrictive vibrational power generator for battery-free IoT application, AIP Advances, 9, 035018.
- 38. Wang X., 2020, Research on track vibration energy recovery system for vehicle operation based on network system, Journal of Physics: Conference Series, 1574, 1, 012055.
- 39. Yang Y.P., Liu J.J., Wang T.J., Kuo K.C., Hsu P.E., 2007, An electric gearshift with ultracapacitors for the power train of an electric vehicle with a directly driven wheel motor, IEEE Transactions on Vehicular Technology, 56, 5, 2421-2431.
- 40. Zhang R., Wang C., Zou P., Lin R., Ma L., 2022, Compositionally complex doping for zero-strain zero-cobalt layered cathodes, Nature, 610, 67-73.
- 41. Zhu Y., Moheimani S.O.R., Yuce M.R., 2010a, A 2-DOF MEMS ultrasonic energy harvester, IEEE Sensors Journal, 11, 155-161.
- 42. Zhu Y., Moheimani S., Yuce M., 2010b, Ultrasonic energy transmission and conversion using a 2-D MEMS resonator, IEEE Electron Device Letters, 31, 374-376.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f65a4ee-933d-4aaf-8a34-4a3effba5139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.