PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contractive and optimal sets in Musielak-Orlicz spaces with a smoothness condition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we use our recent generalization of a theorem of Jamison--Kaminska-Lewicki (characterizing one-complemented subspaces in Musielak-Orlicz sequence spaces defined by Musielak-Orlicz functions satisfying a general smoothness condition) in order to compare contractive and optimal sets in finite-dimensional Musielak-Orlicz [formula] spaces in the spirit of Kaminska-Lewicki. We also give an example illustrating the importance of the smoothness assumptions in our theorem.
Rocznik
Strony
667--684
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Cracow University of Economics Department of Mathematics Rakowiecka 27, 31-510 Cracow, Poland
Bibliografia
  • [1] M. Baronti, P.L. Papini, Norm one projections onto subspaces of `p, Ann. Mat. Pura Appl. 152 (1988), 53–61.
  • [2] B. Beauzamy, Points minimaux dans les espaces de Banach, C. R. Math. Acad. Sci. Paris 280 Série A (1975), 717–720.
  • [3] B. Beauzamy, Points minimaux dans les espaces de Banach, Séminaire Maurey-Schwartz, exp. XVIII et XIX, Centre Math. Ecole Polytechn., Paris, 1975.
  • [4] B. Beauzamy, Projections contractantes dans les espaces de Banach, Bull. Sci. Math. (2) 102 (1978), 43–47.
  • [5] B. Beauzamy, B. Maurey, Points minimaux et ensembles optimaux dans les espaces de Banach, J. Funct. Anal. 24 (1977), 107–139.
  • [6] A. Denkowska, One-complemented subspaces in Musielak-Orlicz sequence spaces with a general smoothness condition, to appear in Numer. Funct. Anal. Optim. 34 (2013) 9, 1–32.
  • [7] V. Davis, P. Enflo, Contractive projections on `p-spaces, London Math. Soc. Lecture Note Ser. 137 (1989), 151–161.
  • [8] P. Enflo, Contractive projections onto subsets of L1(0, 1), London Math. Soc. Lecture Note Ser. 137 (1989), 162–184.
  • [9] P. Enflo, Contractive projections onto subsets of Lp-spaces, Lect. Notes Pure Appl. Math., Function Spaces, 136, New York, Basel, Marcel Dekker Inc., 1992, 79–94.
  • [10] H. Hudzik, Y. Ye, Support functionals and smoothness in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Comment. Math. Univ. Carolin. 31 (1990) 4, 661–684.
  • [11] J.E. Jamison, A. Kaminska, G. Lewicki, One-complemented subspaces of Musielak-Orlicz sequence spaces, J. Approx. Theory 130 (2004), 1–37.
  • [12] A. Kaminska, G. Lewicki, Contractive and optimal sets in modular spaces, Math. Nachr. 268 (2004), 74–95.
  • [13] A. Kaminska, M. Mastyło, The Schur and (weak) Dunford-Pettis properties in Banach lattices, J. Aust. Math. Soc. 73 (2002) 2, 251–278.
  • [14] E. Katirtzoglou, Type and cotype in Musielak-Orlicz spaces, J. Math. Anal. Appl. 226 (1998), 432–455.
  • [15] G. Lewicki, G. Trombetta, Optimal and one-complemented subspaces, Monatsh. Math. 153 (2008), 115–132.
  • [16] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer Verlag, Berlin, 1977.
  • [17] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer Verlag, 1983.
  • [18] W. Wnuk, Representations of Orlicz lattices, Dissertationes Math. 235 (1984).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f651aa2-2a10-40e6-9ad1-ba02dd2bb954
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.