PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The effect of magnesium and copper addition on the microstructure, mechanical properties, and corrosion rate of as-cast biodegradable zinc alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microstructure, mechanical, and corrosion properties of as-cast pure zinc and its binary and ternary alloys with magnesium (Mg), and copper (Cu) additions were investigated. Analysis of microstructure conducted by scanning electron microscopy revealed that alloying additives contributed to decreasing average grain size compared to pure zinc. Corrosion rate was calculated based on immersion and potentiodynamic tests and its value was lower for materials with Cu content. Moreover, it was shown that the intermetallic phase, formed as a result of Mg addition, constitutes a specific place for corrosion. It was observed that a different type of strengthening was obtained depending on the additive used. The presence of the second phase with Mg improved the tensile strength of the Zn-based materials, while Cu dissolved in the solution had a positive effect on their elongation.
Rocznik
Strony
art. no. e149175
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Faculty of Foundry Engineering, AGH University of Science and Technology, Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
Bibliografia
  • [1] X. Tong et al., “Biodegradable Zn–Cu–Li alloys with ultra-high strength, ductility, antibacterial ability, cytocompatibility, and suitable degradation rate for potential bone-implant applications,” Smart Mater. Manuf., vol. 1, p. 100012, 2023, doi: 10.1016/j.smmf.2022.100012.
  • [2] X. Liu et al., “Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application,” Mater. Des., vol. 94, pp. 95–104, Mar. 2016, doi: 10.1016/j.matdes.2015.12.128.
  • [3] H. Gong, K. Wang, R. Strich, and J.G. Zhou, “In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy,” J. Biomed. Mater. Res. B Appl. Biomater., vol. 103, no. 8, pp. 1632–1640, Nov. 2015, doi: 10.1002/jbm.b.33341.
  • [4] P.K. Bowen, J. Drelich, and J. Goldman, “Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents,” Adv. Mater., vol. 25, no. 18, pp. 2577–2582, May 2013, doi: 10.1002/adma.201300226.
  • [5] P.K. Bowen et al., “Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys,” Adv. Healthc. Mater., vol. 5, no. 10, pp. 1121–1140, May 2016, doi: 10.1002/adhm.201501019.
  • [6] L. Kong, Z. Heydari, G.H. Lami, A. Saberi, M.S. Baltatu, and P. Vizureanu, “A Comprehensive Review of the Current Research Status of Biodegradable Zinc Alloys and Composites for Biomedical Applications,” Materials, vol. 16, no. 13, p. 4797, Jul. 2023, doi: 10.3390/ma16134797.
  • [7] E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, and M. Vedani, “Zinc-based alloys for degradable vascular stent applications,” Acta Biomater., vol. 71, pp. 1–23, Apr. 2018, doi: 10.1016/j.actbio.2018.03.005.
  • [8] H. Kabir, K. Munir, C. Wen, and Y. Li, “Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives,” Bioact. Mater., vol. 6, no. 3, pp. 836–879, Mar. 2021, doi: 10.1016/j.bioactmat.2020.09.013.
  • [9] S. Liu, D. Kent, N. Doan, M. Dargusch, and G. Wang, “Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys,” Bioact. Mater., vol. 4, pp. 8–16, Dec. 2019, doi: 10.1016/j.bioactmat.2018.11.001.
  • [10] C. Shen et al., “Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn–1.2 Mg alloy for biodegradable implants,” RSC Adv., vol. 6, no. 89, pp. 86410–86419, 2016, doi: 10.1039/C6RA14300H.
  • [11] J. Kubásek, D. Vojtěch, I. Pospíšilová, A. Michalcová, and J. Maixner, “Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy,” Int. J. Miner. Metall. Mater., vol. 23, no. 10, pp. 1167–1176, Oct. 2016, doi: 10.1007/s12613-016-1336-7.
  • [12] M.S. Dambatta, S. Izman, D. Kurniawan, and H. Hermawan, “Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants,” J. King Saud. Univ. Sci., vol. 29, no. 4, pp. 455–461, Oct. 2017, doi: 10.1016/j.jksus.2017.07.008.
  • [13] L. Ye et al., “Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of ascast Zn–Mg binary alloys,” J. Mater. Res. Technol., vol. 16, pp. 1673–1685, Jan. 2022, doi: 10.1016/j.jmrt.2021.12.101.
  • [14] P. Li et al., “Investigation of zinccopper alloys as potential materials for craniomaxillofacial osteosynthesis implants,” Mater. Sci. Eng.-C, vol. 103, p. 109826, Oct. 2019, doi: 10.1016/j.msec.2019.109826.
  • [15] X. Liu et al., “Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals,” Mater. Lett., vol. 162, pp. 242–245, Jan. 2016, doi: 10.1016/j.matlet.2015.07.151.
  • [16] L. Zhang, X.Y. Liu, H. Huang, and W. Zhan, “Effects of Ti on microstructure, mechanical properties and biodegradation behavior of Zn-Cu alloy,” Mater. Lett., vol. 244, pp. 119–122, Jun. 2019, doi: 10.1016/j.matlet.2019.02.071.
  • [17] X. Liu et al., “Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy,” J. Alloys Compd., vol. 664, pp. 444–452, Apr. 2016, doi: 10.1016/j.jallcom.2015.10.116.
  • [18] H.F. Li et al., “Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr,” Sci. Rep., vol. 5, no. 1, p. 12190, Aug. 2015, doi: 10.1038/srep12190.
  • [19] J. Lin et al., “Biodegradable Zn–3Cu and Zn–3Cu–0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications,” J. Mater. Sci. Technol., vol. 68, pp. 76–90, Mar. 2021, doi: 10.1016/j.jmst.2020.06.052.
  • [20] M. Wątroba et al., “Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material,” Mater. Des., vol. 183, p. 108154, Dec. 2019, doi: 10.1016/j.matdes.2019.108154.
  • [21] X. Wang, Y. Ma, B. Meng, and M. Wan, “Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy,” Mater. Sci. Eng.-A, vol. 824, p. 141857, Sep. 2021, doi: 10.1016/j.msea.2021.141857.
  • [22] L. Li et al., “Investigation on microstructures, mechanical properties and in vitro corrosion behavior of novel biodegradable Zn-2Cu-0.01Ti-xLi alloys,” J. Alloys Compd., vol. 888, p. 161529, Dec. 2021, doi: 10.1016/j.jallcom.2021.161529.
  • [23] X. Tong et al., “Development of biodegradable Zn–1Mg–0.1RE (RE = Er, Dy, and Ho) alloys for biomedical applications,” Acta Biomater., vol. 117, pp. 384–399, Nov. 2020, doi: 10.1016/j.actbio.2020.09.036.
  • [24] J. Lin et al., “Biodegradable ternary Zn–3Ge–0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications,” Acta Biomater., vol. 115, pp. 432–446, Oct. 2020, doi: 10.1016/j.actbio.2020.08.033.
  • [25] G. Katarivas Levy, J. Goldman, and E. Aghion, “The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper,” Metals (Basel), vol. 7, no. 10, p. 402, Oct. 2017, doi: 10.3390/met7100402.
  • [26] S. Huang, L. Wang, Y. Zheng, L. Qiao, and Y. Yan, “In vitro degradation behavior of novel Zn–Cu–Li alloys: Roles of alloy composition and rolling processing,” Mater. Des., vol. 212, p. 110288, Dec. 2021, doi: 10.1016/j.matdes.2021.110288.
  • [27] C. García-Mintegui et al., “Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility,” Bioact. Mater., vol. 6, no. 12, pp. 4430–4446, Dec. 2021, doi: 10.1016/j.bioactmat.2021.04.015.
  • [28] G. Bao et al., “Feasibility evaluation of a Zn-Cu alloy for intrauterine devices: In vitro and in vivo studies,” Acta Biomater., vol. 142, pp. 374–387, Apr. 2022, doi: 10.1016/j.actbio.2022.01.053.
  • [29] J. Huang et al., “Preparation and Properties of Zn-Cu Alloy for Potential Stent Material,” J. Mater. Eng. Perform., vol. 29, no. 10, pp. 6484–6493, Oct. 2020, doi: 10.1007/s11665-020-05167-0.
  • [30] M.M. Alves, T. Prošek, C.F. Santos, and M F. Montemor, “Evolution of the in vitro degradation of Zn–Mg alloys under simulated physiological conditions,” RSC Adv., vol. 7, no. 45, pp. 28224–28233, 2017, doi: 10.1039/C6RA28542B.
  • [31] K.D. Ralston and N. Birbilis, “Effect of Grain Size on Corrosion: A Review,” Corrosion, vol. 66, no. 7, pp. 075005–075005–13, Jul. 2010, doi: 10.5006/1.3462912.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f5f52d8-100b-4e02-9d79-76d28f50bfac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.