PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of winding topologies on the performance of flux-switching permanent magnet machine having different number of rotor poles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Comparison of the electromagnetic performance of a flux-switching permanent magnet (PM) machine having two separate stators as well as different winding topologies is investigated in this paper. Different stator and rotor pole combinations of these machines are also considered. The analysis includes the open-circuit and on-load characteristics of the analyzed machines. It is observed that, the largest fundamental values of electromagnetic torque, for each winding topology, is seen in the 11-rotor-pole and 10-rotor-pole machines having alternate- and all-pole-wound configurations, respectively. Moreover, significant ripple is observed in the waveforms of the even-number rotor pole machines compared to their corresponding odd-number rotor pole counterparts. Overall, the alternate-pole-wound machines essentially have larger torque-density than their equivalent all-pole-wound ones. The investigated machine is also tested for validation.
Rocznik
Strony
845--855
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wz.
Twórcy
  • Department of Electrical/Electronics Engineering, Michael Okpara University of Agriculture PMB 7267 Umudike, Nigeria
  • Department of Electrical/Electronics Engineering, Michael Okpara University of Agriculture PMB 7267 Umudike, Nigeria
Bibliografia
  • [1] Li S., Li Y., Sarlioglu B., Partial irreversible demagnetization assessment of flux-switching permanent magnet machine using ferrite permanent magnet material, IEEE Transactions on Magnetics, vol. 51, no. 7, p. 8106209 (2015).
  • [2] Hua W., Zhang G., Cheng M., Investigation and design of a high-power flux-switching permanent magnet machine for hybrid electric vehicles, IEEE Transactions on Magnetics, vol. 51, no. 3, p. 8201805 (2015).
  • [3] Bianchi N., Bolognani S., Pré M. D., Grezzani G., Design considerations for fractional-slot winding configurations of synchronous machines, IEEE Transactions on Industry Applications, vol. 42, no. 4, pp. 997–1006 (2006).
  • [4] Cheng S. P., Hwang C. C., Design of high-performance spindle motors with single-layer concentrated windings and unequal tooth widths, IEEE Transactions on Magnetics, vol. 43, no. 2, pp. 802–804 (2007).
  • [5] Magnussen F., Lendenmann H., Parasitic effects in PM machines with concentrated windings, IEEE Transactions Industry Applications, vol. 43, no. 5, pp. 1223–1232 (2007).
  • [6] El-Refaie A. M., Jahns T. M., Impact of winding layer number and magnet type on synchronous surface PM machines designed for wide constant-power speed range operation, IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 53–60 (2008).
  • [7] Bianchi N., Bolognani S., Pré M. D., Impact of stator winding of a five-phase permanent-magnet motor on postfault operations, IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 1978–1987 (2008).
  • [8] Wrobel R., Mellor P.H., McNeill N., and Staton D.A., Thermal performance of an open-slot mo-dular-wound machine with external rotor, IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 403–411 (2010).
  • [9] Hwang C.C., Chang C.M., Hung S.S., Liu C.T., Design of high performance flux switching PM machines with concentrated windings, IEEE Transactions on Magnetics, vol. 50, no. 1, p. 4002404 (2014).
  • [10] Chen J.T., Zhu Z.Q., Comparison of all- and alternate-poles-wound flux-switching PM machines having different stator and rotor pole numbers, IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1406–1415 (2010).
  • [11] Ishak D., Zhu Z. Q., Howe D., Comparison of PM brushless motors, having either all teeth or alternate teeth wound, IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 95–103 (2006).
  • [12] Chen J.T., Zhu Z.Q., Iwasaki S., Deodhar R., Comparison of losses and efficiency in alternate flux-switching permanent magnet machines, Proceedings of International Conference on Electrical Machines (ICEM), Rome, Italy, pp. 1–6 (2010).
  • [13] Jian L., Chau K. T., Gong Y., Jiang J .Z., Yu C., Li W., Comparison of coaxial magnetic gears with different topologies, IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4526–4529 (2009).
  • [14] Wu Y. C., Wang C. W., Transmitted torque analysis of a magnetic gear mechanism with rectangular magnets, Applied Mathematics and Information Science, vol. 9, no. 2, pp. 1059–1065 (2015).
  • [15] Tlali P. M., Gerber S., Wang R. J., Optimal design of an outer-stator magnetically geared permanent magnet machine, IEEE Transactions on Magnetics, vol. 52, no. 2, p. 8100610 (2016).
  • [16] Hua W., Cheng M., Zhu Z. Q., Howe D., Design of flux-switching permanent magnet machine considering the limitation of inverter and flux-weakening capability, Proceedings of IEEE Industry Applications Annual Conference Meeting, Tampa, FL, USA, pp. 2403–2410 (2006).
  • [17] Zhu Z. Q., Chen J. T., Advanced flux-switching permanent magnet brushless machines, IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1447–1453 (2010).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f5f3ad3-17c0-48a1-9ea7-e9b6bbfbad0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.