PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of reliability of process power plant by connecting SVC in generator bus during grid fault

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fault clearing time plays an important role in maintaining power system stability and process survivability during major system faults under a variety of system configuration and topologies. Grid disturbance in the power system presents a very distinct challenge; lack of a utility interconnection hinders the system’s ability to recover from loss of generation. The key factor in plant survivability during a grid fault is optimal use of a fast acting governor and a Flexible Alternating Current Transmission System device (FACTS) to maintain power system stability. In this paper, the core objective is to increase the critical fault clearing time of captive generator sets during a grid fault without violating the transient stability criteria recommended in IEC standards. As a remedial measure, a static VAR Compensator (SVC) was connected to the generator bus. For simulation purposes an IEEE General Steam-Turbine (STM) governor model and an IEEE AC5A excitation model were considered. During a grid fault the transient performance of captive generator sets was observed with and without connecting SVC in generator bus.
Rocznik
Strony
239--244
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, Indian School of Mines, Dhanbad, Jharkhand-826004, India
autor
  • Department of Electrical Engineering, Indian School of Mines, Dhanbad, Jharkhand-826004, India
  • Department of Electrical Engineering, Indian School of Mines, Dhanbad, Jharkhand-826004, India
Bibliografia
  • [1] Evaluation of the effect of legislative instruments and other community policies on the development of the contribution of renewable energy sources in the eu and proposals for concrete actions, European commission report, Commission Of The European Communities (2004).
  • [2] A. Fishov, D. Toutoundaeva, Power system stability standardization under present-day conditions, in: Strategic Technology, 2007. IFOST 2007. International Forum on, IEEE, 2007, pp. 411–415.
  • [3] A. El Shahat, Pv module optimum operation modeling, Journal of Power technologies 94 (1) (2014) 50–66.
  • [4] C. Canizares, K. Bhattacharya, I. El-Samahy, H. Haghighat, J. Pan, C. Tang, Re-defining the reactive power dispatch problem in the context of competitive electricity markets, IET generation, transmission & distribution 4 (2) (2010) 162–177.
  • [5] S. Barsali, M. Ceraolo, P. Pelacchi, D. Poli, Control techniques of dispersed generators to improve the continuity of electricity supply, in: Power Engineering Society Winter Meeting, 2002. IEEE, Vol. 2, IEEE, 2002, pp. 789–794.
  • [6] Energy Networks Association, UK, Distributed Generation Connection Guide (2011).
  • [7] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, et al., Definition and classification of power system stability, IEEE transactions on Power Systems 19 (2) (2004) 1387–1401.
  • [8] A. M. Miah, A new method of transient stability assessment by using a simple energy margin function, in: Proceedings of the 2nd International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 2002, pp. 24–27.
  • [9] X. Ding, P. Crossley, D. Morrow, Future distribution networks with distributed generators capable of operating in islanded mode, in: Universities Power Engineering Conference, 2004. UPEC 2004. 39th International, Vol. 2, IEEE, 2004, pp. 773–776.
  • [10] K. Rajamani, U. Hambarde, Islanding and load shedding schemesfor captive power plants, IEEE Transactions on power delivery 14 (3) (1999) 805–809.
  • [11] S. Singh, J. Saini, Fuzzy fpga based captive power management, in: Power India Conference, 2006 IEEE, IEEE, 2006, pp. 7–pp.
  • [12] A. Xue, C. Shen, S. Mei, Y. Ni, F. F. Wu, Q. Lu, A new transient stability index of power systems based on theory of stability region and its applications, in: Power Engineering Society General Meeting, 2006. IEEE, IEEE, 2006, pp. 1–7.
  • [13] U. Goswami, T. K. Sengupta, A. Das, Improvement of transient stability performance of captive power plant during islanding condition, Indonesian Journal of Electrical Engineering and Computer Science 12 (12) (2014) 8001–8007.
  • [14] B. Subudhi, R. Panigrahi, P. Panda, A comparative assessment of hysteresis and dead beat controllers for performances of three phase shunt active power filtering, Journal of Power Technologies 94 (4) (2014) 286–295.
  • [15] R. Ebrahimpour, E. K. Abharian, S. Z. Moussavi, A. A. M. Birjandi, Transient stability assessment of a power system by mixture of experts, International Journal of Engineering 4 (1) (2010) 93–104.
  • [16] I. P. S. E. Committee, et al., Proposed terms and definitions for power system stability, IEEE Trans 101 (1982) 1894–1898.
  • [17] P. Iyambo, R. Tzoneva, Transient stability analysis of the ieee 14-bus electric power system, in: AFRICON 2007, IEEE, 2007, pp. 1–9.
  • [18] M. Aghamohammadi, A. B. Khormizi, M. Rezaee, Effect of generator parameters inaccuracy on transient stability performance, in: Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, IEEE, 2010, pp. 1–5.
  • [19] E. Sorrentino, O. Salazar, D. Chavez, Effect of generator models and load models on the results of the transient stability analysis of a power system, in: Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th International, IEEE, 2009, pp. 1–5.
  • [20] Y. Xue, T. Van Custem, M. Ribbens-Pavella, Extended equal area criterion justifications, generalizations, applications, IEEE Transactions on Power Systems 4 (1) (1989) 44–52.
  • [21] G. A. Luders, Transient stability of multimachine power systems via the direct method of lyapunov, IEEE Transactions on Power Apparatus and Systems 90 (1) (1971) 23–36.
  • [22] R. Byerly, D. Poznaniak, E. Taylor, Static reactive compensation for power transmission systems, IEEE transactions on power Apparatus and systems 101 (10) (1982) 3997–4005.
  • [23] A. Hammad, Analysis of power system stability enhancement by static var compensators, IEEE Transactions on Power Systems 1 (4) (1986) 222–227.
  • [24] K. Padiyar, R. Varma, Damping torque analysis of static var system controllers, IEEE Transactions on Power Systems 6 (2) (1991) 458–465.
  • [25] A. Messina, E. Barocio, Nonlinear analysis of inter-area oscillations: effect of svc voltage support, Electric Power Systems Research 64 (1) (2003) 17–26.
  • [26] M. Abido, Analysis and assessment of statcom-based damping stabilizers for power system stability enhancement, Electric Power Systems Research 73 (2) (2005) 177–185.
  • [27] M. Abido, Power system stability enhancement using facts controllers: A review, The arabian journal for science and engineering 34 (1B) (2009) 153–172.
  • [28] S. A. Al-Baiyat, Power system transient stability enhancement by STATCOM with nonlinear H1 stabilizer, Electric Power Systems Research 73 (1) (2005) 45–52.
  • [29] I. Report, Computer representation of excitation systems, IEEE Transactions on Power Apparatus and Systems (6) (1968) 1460–1464.
  • [30] M. Crenshaw, K. Bollinger, R. Byerly, R. Cresap, L. Eilts, D. Eyre, Excitation system models for power system stability studies, IEEE TRANS. POWER APPAR. AND SYS. 100 (2) (1981) 494–509.
  • [31] D. Lee, IEEE recommended practice for excitation system models for power system stability studies (IEEE std 421.5-1992), Energy Development and Power Generating Committee of the Power Engineering Society 95 (1992) 96.
  • [32] R. Byerly, O. Aanstad, D. Berry, R. Dunlop, D. Ewart, B. Fox, L. Johnson, D. Tschappat, Dynamic models for steam and hydro turbines in power system studies, IEEE Transactions on Power Apparatus and Systems 92 (6) (1973) 1904–1915.
  • [33] Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies, Dynamic models for fossil fueled steam units in power system studies, IEEE Transactions on Power Systems 6 (2) (1991) 753–761.
  • [34] NEMA ICS 1, Industrial Control and Systems: General Requirements (2008).
  • [35] NEMA ICS 2, Industrial Control Devices, Controllers and Assemblies (2008).
  • [36] IEEE 141-1986, IEEE Recommended Practice for Electric Power Distribution for Industrial Plants (ANSI) (1986).
  • [37] IEEE 242-1986, IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (ANSI) (1986).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f4f1e6f-3f1c-4bd7-9943-c887d3264ed2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.