PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced modelling and luminance analysis of LED optical systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designing, optimizing and analyzing optical systems as part of the implementation process into production of modern luminaires require using advanced simulation and computational methods. The progressive miniaturization of LED (light emitting diode) chips and growth in maximum luminance values, achieving up to 108 cd/m2, require constructing very accurate geometries of reflector and lens systems producing complex luminous intensity distributions while reducing discomfort glare levels. Currently, the design process cannot function without advanced simulation methods. Today’s simulation methods in the lighting technology offer very good results as far as relatively large conventional light sources such as halogen lamps, metal halide lamps and high pressure sodium lamps are concerned. Unfortunately, they often fail in the case of chip-on-board LED light sources whose luminous surface dimensions are increasingly often contained inside a cube of the side length below 1mm. With the high sensitivity of such small chips and lenses with dimensions ranging from a just a few to between 10 and 20 mm, which is presented in this paper, modern luminance distribution measurement methods, luminance modelling and ray tracing methods should be used to minimize any errors arising from incorrectly projecting the design in the final physical model. Also, very importantly, focus should be directed towards reducing a chance of making a mistake while collimating the position of the light source inside the optical system. The paper presents a novel simulation calculation method enriched with an analysis of optical system sensitivity to a light source position. The results of simulation calculations are compared with the results of laboratory measurements for corresponding systems.
Rocznik
Strony
1107--1116
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Institute of Electrical Power Engineering, 75 Koszykowa St., 00-662 Warsaw, Poland
Bibliografia
  • [1] S. Słomiński, “Typical Causes of Errors during Measuring Luminance Distributions in Relation to Glare Calculations”, 7th Light. Conf. Visegr. Countries, LUMEN V4 2018 – Proc. (2018).
  • [2] S. Słomiński, “Advanced Luminance Modeling of Light Sources for Simulation and Computational Purposes of Lighting Parameters”, 7th Light. Conf. Visegr. Countries, LUMEN V4 2018 – Proc. 2–6 (2018).
  • [3] H. Cai, “Luminance gradient for evaluating lighting”, Light. Res. Technol. 48, 155–175 (2016).
  • [4] M. Kayakuş and I. Üncü, “Research Note: The measurement of road lighting with developed artificial intelligence software”, Light. Res. Technol. (2019).
  • [5] T. Porsch and F. Schmidt, “Assessment of Daylit Glare Parameters With Imaging Luminance Measuring Devices (Ilmd ) and Image Processing”, Gmbh, Technoteam Bild. 1, 5–6 (2010).
  • [6] A. Rozowicz, M. Lesko, and H. Wachta, “The technical possibilities of losses reduction in the LED optical systems”, Proc. 2016 IEEE Light. Conf. Visegr. Countries, Lumen V4 2016 (2016).
  • [7] J. Rami, G. Lorge, and P. Tarroux, “LEDs optical modelling and simulation for lighting application”, in 10th International Symposium on the Science and Technology of Light (2004).
  • [8] S. Zalewski, “Design of optical systems for LED road luminaires”, Appl. Opt. 54, 163 (2015).
  • [9] L. Zhu, A. Ge, Z. Ge, R. Hao, J. Chen, and X. Tao, “A Fresnel freeform surface collimating lens for LED”, Light. Res. Technol. 6, 952‒960 (2018).
  • [10] P. Tabaka and P. Rozga, “Assessment of methods of marking LED sources with the power of equivalent light bulb”, Bull. Pol. Ac.: Tech. 65(6), 883‒890 (2017).
  • [11] R. Krupinski, “Dynamically variable luminance distribution as the method of designing and architectural floodlighting”, Proc. 2016 IEEE Light. Conf. Visegr. Countries, Lumen V4 2016 (2016).
  • [12] K. Guzek and P. Napieralski, “Measurement of noise in the Monte Carlo point sampling method”, Bull. Pol. Ac.: Tech. 59(1), 15‒19 (2011).
  • [13] K. Guzek and P. Napieralski, “Efficient rendering of caustics with streamed photon mapping”, Bull. Pol. Ac.: Tech. 65(3), 361‒368 (2017)
  • [14] K. Bredemeier, “Photometric data for the development of light-ing components”, Engineering for a Changing World 59, 1‒16 (2017).
  • [15] K. Bredemeier and F. Schmidt, “Ray data of LEDs and arc lamps”, Technoteam BV GmbH, Germany, W. Jordanov, ILEXA GbR, Germany (2005).
  • [16] S. Słomiński, “Dynamic mapping of luminance in analytical model of source of the light”, Przęgląd Elektrotechniczny 86 (2010).
  • [17] S. Słomiński, “Luminance mapping to the light source model – possibilities to use a MML in the lighting technology field”, Przegląd Elektrotechniczny 87, (2011).
  • [18] S. Słomiński, “Mapowanie rozkładu luminancji źródła światła w obliczeniach fotometrycznych odbłyśników zwierciadlanych (Mapping the luminance distribution of a light source in photo-metric calculations of specular reflectors)”, PhD Thesis, Warsaw University of Technology, (2010).
  • [19] ASJ. Bergen, “Practical method of comparing luminous intensity distributions”, Light. Res. Technol. 44, 27‒36 (2012).
  • [20] C. Filosa, J.H.M. ten Thije Boonkkamp, and W.L. Ijzerman, “Ray tracing method in phase space for two-dimensional optical systems”, Appl. Opt. 55, 3599 (2016).
  • [12] K. Kinameri, K. Akazawa and M. Awata, “The Monte Carlo method in the predetermination of a luminous intensity distri-bution”, Journals Free Access 10(2), 2_25‒2_34 (1986).
  • [22] Opsira GmbH, “Ray data measurement,” https://www.opsira.de/en/products/lightlab/ray-data-measurement.html.
  • [23] IES TM-25‒13, “Ray File Format for the Description of the Emission Property of Light Sources”, Illuminating Engineering Society, (2013).
  • [24] LTI Optics, LLC, http://www.ltioptics.com/en/photopia-gen-eral-2017.html (2017)
  • [25] M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB”, Metrologia, 49: 141–145 (2012)
  • [26] F. Schmähling, G. Wübbeler, M. Lopez, F. Gassmann, U. Krüger, F. Schmidt, A. Sperling, and C. Elster, “Virtual experiment for near-field goniophotometric measurements,” Appl. Opt. 53, 1481‒1487 (2014)
  • [27] S. Słomiński, “Selected problems in modern methods of luminance measurement of multisource led luminaires”, Light Eng. 24, (2016).
  • [28] J. Bąk and W. Pabiańczyk, “Podstawy Techniki Świetlnej (Basics of Light Technology)”, (1994).
  • [29] M. Tidd, “Freeform Optic Design Method with Multiple 2D Profiles: Type III Roadway Lens Example”, Optical Society of America, paper JW1B.6. (2017).
  • [30] F. Gassmann, U. Krueger, T. Bergen, and F. Schmidt, “Comparison of luminous intensity distributions”, Light. Res. Technol. 49(1), 62–83 (2017)
  • [31] S. Słomiński and R. Krupiński, “Luminance distribution projection method for reducing glare and solving object-floodlighting certification problems”, Build. Environ. 134, 87–101 (2018).
  • [32] Y. Tyukhova and C. Waters, “Subjective and pupil responses to discomfort glare from small, high-luminance light sources”, Light. Res. Technol. (2018).
  • [33] R. Walczak, “Inkjet 3D printing – towards new micromachining tool for MEMS fabrication”, Bull. Pol. Ac.: Tech. 66(2), 179‒186 (2018).
  • [34] S. Michaud, “Enabled by 3-D printing”, Optics & Photonics News 2 (2017)
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f49db3b-75b6-44f2-afac-a36cb71400f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.