PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modeling of the casting solidification process in a mold taking into account the influence of an air gap with variable width

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a numerical modeling approach that utilizes the Finite Element Method (FEM) to simulate the solidification process of a casting in a mold. The study takes into account the local width of the air gap at each computational point on the interface between the casting and the mold. The developed numerical model provides a detailed understanding of the heat transfer between the casting and the mold during the solidification. The study shows that the air gap with variable width has a significant impact on the solidification process, affecting the cooling rate and the formation of the solidified region.
Rocznik
Strony
117--128
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
  • Department of Mechanics and Fundamentals of Machine Design Czestochowa University of Technology Czestochowa, Poland
Bibliografia
  • 1. Suliga, M., Szota, P., & Mróz, S. (2017). Simulation and measurement of temperature in high speed drawing process of steel wires. Computer Methods in Materials Science, 17(1), 69-75. DOI: 10.7494/cmms.2017.1.0577.
  • 2. Pozorska, J. (2018). Numerical modelling of sandwich panels with a non-continuous soft core. MATEC Web of Conferences, 157, 06007. DOI: 10.1051/matecconf/201815706007.
  • 3. Pozorska J., Pozorski Z., & Janik L. (2017). Numerical simulations of structural behavior of sandwich panels subjected to concentrated static loads. Journal of Applied Mathematics and Computational Mechanics, 16(2), 113-121. DOI: 10.17512/jamcm.2017.2.09.
  • 4. Mortensen, D., Henriksen, B.R., M’Hamdi, M., & Fjær, H.G. (2016). Coupled modelling of air-gap formation and surface exudation during extrusion ingot DC-casting. In: Grandfield, J.F., Eskin, D.G. (eds). Essential Readings in Light Metals. Cham: Springer. DOI: 10.1007/978-3-319- 48228-6_101.
  • 5. Gowsalya, L.A., & Afshan, M.E. (2021). Heat transfer studies on solidification of casting process. in: Casting Processes and Modelling of Metallic Materials. DOI: 10.5772/intechopen.95371.
  • 6. Li, W., Li, L., Geng, Y., Zang, X., Jing, Y., Li, D., & Thomas, B.G. (2021). Air gap measurement during steel-ingot casting and its effect on interfacial heat transfer. Metallurgical and Materials Transactions B, 52, 2224-2238. DOI: 10.1007/s11663-021-02152-3.
  • 7. Xu, J., Kang, J., Zheng, L., Mao, W., & Wang, J. (2022). Numerical simulation of the directional solidification process with multi-shell mold being gradually immersed in water. Journal of Materials Research and Technology, 19, 2705-2716. DOI: 10.1016/j.jmrt.2022.06.037.
  • 8. Chawla, A., Tiedje, N.S., & Spangenberg, J. (2023). Numerical modelling for the effect of metal- -mould air gaps on shell thickness in horizontal continuous casting of cast iron. Archives of Foundry Engineering, 23(1), 8 p. DOI: 10.24425/afe.2023.144280.
  • 9. Skrzypczak, T., Węgrzyn-Skrzypczak, E., & Sowa, L. (2018). Numerical modeling of solidification process taking into account the effect of air gap. Applied Mathematics and Computation, 321, 768-779. DOI: 10.1016/j.amc.2017.11.023.
  • 10. Mochnacki, B., & Suchy. J.S. (1993). Modeling and Simulation of Solidification of Castings. Warsaw: PWN.
  • 11. Skrzypczak T., & Węgrzyn-Skrzypczak, E. (2015). Modeling of thermal contact through gap with the use of finite element method, Journal of Applied Mathematics and Computational Mechanics, 14(4), 145-152. DOI: 10.17512/jamcm.2015.4.15.
  • 12. Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331.
  • 13. Campbell J. (2011). Complete Casting Handbook – Metal Casting Processes, Techniques and Design. Butterworth-Heinemann.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f497734-b028-4c3e-b7f1-a62daeef823d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.