PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Membrane versus bending components of transverse forces in cylindrical panels in the CST and the FSDT

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nonlinear problem of deflection of isotropic cylindrical panels fixed along all edges and subject to transverse load was considered within the first-order shear deformation theory (FSDT) and the classical shell theory (CST). An effect of the parameter of curvature on bending and membrane components and resultants of transverse forces was analyzed. Par- ticular attention was drawn to the fact that the bending components were accompanied by transverse deformations, whereas for the membrane components, the panel was transversely perfectly rigid. Resultants of transverse forces can be significantly larger than the bending components. In failure criteria of laminated structures, only the bending transverse forces are employed.
Rocznik
Strony
603--617
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Department of Strength of Materials, Lodz, Poland
  • Lodz University of Technology, Department of Strength of Materials, Lodz, Poland
Bibliografia
  • 1. Bathe K.J., 1996, Finite Element Procedures, Prentice-Hall International, Inc.
  • 2. Cai L., Rong T., Chen D., 2002, Generalized mixed variational methods for Reissner plate and its applications, Computational Mechanics, 30, 29-37.
  • 3. Cen S., Shang Y., 2015, Developments of Mindlin-Reissner plate elements, Mathematical Problems in Engineering, ID 456740.
  • 4. Endo M., Kimura N., 2007, An alternative formulation of the boundary value problem for the Timoshenko beam and Mindlin plate, Journal of Sound and Vibration, 301, 355-373.
  • 5. Kim S.E., Thai H-T., Lee J., 2009, A two variable refined plate theory for laminated composite plates, Composite Structures, 89, 197-205.
  • 6. Kolakowski Z., Jankowski J., 2020, Effect of membrane components of transverse forces on magnitudes of total transverse forces in the nonlinear stability of plate structures, Materials, 13, 22, 5262.
  • 7. Kolakowski Z., Jankowski J., 2021, Some inconsistencies in the nonlinear buckling plate theories – FSDT, S-FSDT, HSDT, Materials, 14, 9, 2154.
  • 8. Mindlin R.D., 1951, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, ASME Journal of Applied Mechanics, 18, 1, 31-38.
  • 9. Park M., Choi D.-H., 2018, A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates, Applied Mathematical Modelling, 61, 49-71.
  • 10. Reddy J.N., 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, Boca Raton, FL.
  • 11. Reddy J.N., 2011, A general nonlinear third-order theory of functionally graded plates, International Journal of Aerospace and Lightweight Structures, 1, 1, 1-21.
  • 12. Reissner E., 1944, On the theory of bending of elastic plates, Journal of Mathematics and Physics, 23, 184-191.
  • 13. Reissner E., 1945, The effect of transverse shear deformation on the bending of elastic plates, ASME Journal of Applied Mechanics, 12, 2, A69-A77.
  • 14. Shimpi R.P., Patel H.G., 2006, A two-variable refined plate theory for orthotropic plate analysis, International Journal of Solids and Structures, 43, 6783-6799.
  • 15. Shimpi R.P., Shetty R.A., Guha A., 2017, A single variable refined theory for free vibrations of a plate using inertia related terms in displacements, European Journal of Mechanics A/Solids, 65, 136-148.
  • 16. Taylor M.W., Vasiliev V.V., Dillard D.A., 1997, On the problem of shear-locking in finite elements based on shear deformable plate theory, International Journal of Solids and Structures, 34, 7, 859-875.
  • 17. Vasiliev V.V., 2000, Modern conceptions of plate theory, Composite Structures, 48, 39-48.
  • 18. Vasiliev V.V., Lurie S.A., 1992, On refined theories of beams, plates, and shells, Journal of Computational Mathematics, 26, 4, 546-557.
  • 19. Volmir A.S., 1967, Stability of Deformable Systems (in Russian), Science Publishing House, Moscow, 984.
  • 20. Volmir A.S., 1972, Nonlinear Dynamics of Plates and Shells (in Russian), Science Publishing House, Moscow, 432.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f48bdbd-f1ae-4e4b-98e8-f88dee3d3bb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.