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A nonlinear problem of deflection of isotropic cylindrical panels fixed along all edges and
subject to transverse load was considered within the first-order shear deformation theory
(FSDT) and the classical shell theory (CST). An effect of the parameter of curvature on
bending and membrane components and resultants of transverse forces was analyzed. Par-
ticular attention was drawn to the fact that the bending components were accompanied by
transverse deformations, whereas for the membrane components, the panel was transversely
perfectly rigid. Resultants of transverse forces can be significantly larger than the bending
components. In failure criteria of laminated structures, only the bending transverse forces
are employed.
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1. Introduction

More than 75 years ago Reissner (1944, 1945) proposed to extend Timoshenko’s linear beam
theory covering the transverse shear effect into a stress-based plate theory. A few years later
Mindlin suggested to develop it into a theory based on the displacement approach (Mindlin,
1951). Hence, these two proposals have been referred to under a common name of the first-order
shear deformation theory (FSDT) or the Reissner-Mindlin plate theory.

Higher-order shear theories were discussed in (Reddy, 2002, 2011). In (Reddy, 2011), a gen-
eral third-order shear plate theory covering geometrical nonlinearities was presented for FGM
plates. Simplifications in this theory, which has 11 generalized displacements compared to 5 dis-
placements in the Reddy third-order theory through the first-order plate theory (FSDT) and
the classical plate theory (CPT) with 3 displacements, were discussed. The Reissner boundary
effect, which requires a rotational potential to be introduced for a fast-variable solution to the
boundary layer, was presented in (Taylor et al., 1997; Vasiliev, 2000; Vasiliev and Lurie, 1992).
In (Cai et al., 2002), a mixed finite element based on the mechanism of the shear locking phe-
nomenon was analyzed. In the FEM, a problem of shear locking in the boundary layer occurs,
as the shape functions cannot approximate a fast-variable solution to the boundary layer (Cen
and Shang, 2015; Bathe, 1996). Within the FSDT, other variants are developed as well, e.g.:
a two-variable refined plate theory (Endo and Kimura, 2007; Kim et al., 2009; Park and Choi,
2018; Shimpi and Patel, 2006) and a single-variable refined theory (Shimpi et al., 2017).

In (Kolakowski and Jankowski, 2020, 2021), the effect of bending and membrane components
of transverse forces on total transverse forces within three nonlinear plate theories, namely: the
CPT (classical plate theory), the S-FSDT (simple first-order shear deformation theory) and the
FSDT for plate elements, was presented. Bending components of forces depend on derivatives of
moments, which are accompanied by transverse deformations. Membrane components depend
on projections of membrane forces on the transverse direction and do not affect transverse
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deformations (Kolakowski and Jankowski, 2021). Bending components are linearly dependent on
plate deflections, whereas membrane components – nonlinearly. Membrane components play an
increasingly significant role along with an increase in deflections above half the plate thickness.
Hence, it is necessary to account for nonlinear theories for finite plate deflections. A more
comprehensive literature survey is given in (Kolakowski and Jankowski, 2020, 2021).

In this paper, the considerations discussed in (Kolakowski and Jankowski, 2021) referring
to components of transverse forces within the nonlinear FSDT and CST (classical shell theory)
(Volmir, 1967), but for square cylindrical steel panels of various curvatures fixed along all edges
and subject to transverse load, are continued. Here, only fundamental equations and their solu-
tions to the nonlinear problem of deflection of the square panel within the CST and the FSDT,
where the Reissner boundary effect is neglected, are presented (Kolakowski and Jankowski, 2020,
2021).

2. Formulation of the problem

An analysis of the nonlinear problem of components of inner transverse forces in a thin-walled
cylindrical panel of various parameters of curvature and subject to the transverse load q (Fig. 1)
is discussed. The problem was solved for a square isotropic panel fixed along the whole perimeter
within the FSDT and the CST. The panel material was assumed to obey Hooke’s law.

Particular attention was paid to bending and membrane components and resultants of trans-
verse forces for cylindrical panels. According to the two accepted theories, bending components
for cylindrical panels are expressed with identical formulas as for the plate (Kolakowski and
Jankowski, 2020, 2021). In contrast, membrane components for both theories are identical, with
additional two components appearing for each curvature-induced component relative to the plate
theory (see Appendix 2 for a more detailed analysis). Thus, attention was drawn to the influ-
ence of the panel curvature parameter k on components and resultants of transverse forces in
the present work.

The appendix contains only the equations necessary to facilitate the readability of the paper
(Appendix 1). A solution for a square isotropic panel was also given, with particular emphasis
on membrane and bending components and resultants of transverse forces (Appendix 2).

The bending components are expressed with formulas (A.10) – FSDT, (A.16) – CST, respec-
tively, which depend on the derivatives of inner moments in the plate. In the second term at
the torsional moment for the FSDT, there is a factor equal to 1, and for the CST – this factor
equals 2. The membrane components of (A.11) – FSDT and (A.17) – CST depend respectively
on the projections of membrane forces on the direction perpendicular to the middle surface of
the panel.

In the nonlinear theories, there are two nonlinear equations to solve the problem of nonlinear
stability of thin plates. One of them is an equation of inseparability of deformations (A.7)
depending on a function of the forces F and the deflection w. The second equation is an equation
of equilibrium of projections of inner transverse forces on the perpendicular direction, including
the transverse load q, which is written in an abbreviated form for the two theories considered
according to (A.13) and (A.19) (see the Appendix) as

l∫

0

b∫

0

[
(Q̂Θx,x + Q̂

Θ
y,y) + (Q

Θ
x,x +Q

Θ
y,y) + q

Θ +
Ny
R

]
δw dx dy = 0 (2.1)

here the upper index Θ = F,C denotes the FSDT, CST, correspondingly.

In the first round bracket in (2.1), there are linear bending components of transverse forces,
and in the second bracket – nonlinear membrane components.
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Comparing (A.10) and (A.16) for bending components, it can be seen that the components
for the CST are larger than those for the FSDT. It should be remembered that expressions
for the component moments are, however, different. According to (A.17), the corresponding

membrane components of transverse forces Q
Θ
x , Q

Θ
y in (2.1) for the theories under consideration

are identical, because they depend only on the variables F , w in (2.1). These components do
not affect transverse deformations.

Considering dependencies (A.12) and (A.18) in (2.1), we have

l∫

0

b∫

0

(
Q̃Θx,x + Q̃

Θ
y,y + q

Θ +
Ny
R

)
δw dx dy = 0 (2.2)

In the above equation, in comparison to the plate theory (i.e., for R = 0), there is an additional
last term associated with the membrane force in the direction of the panel arch, i.e., the y axis
(Fig. 1).

Equation (2.1) for the CST, after consideration of (A.8), leads to one of the von Kármán
equations

l∫

0

b∫

0

[
D(w,xxxx + 2w,xxyy +w,yyyy)−

(
F,yyw,xx − 2F,xyw,xy

+ F,xxw,yy +
F,xx
R
+ q
)]
δw dx dy = 0

(2.3)

and the second equation is an equation of inseparability of deformations (A.7).

3. Analysis of the calculation results

A detailed analysis was carried out for a square steel panel (Fig. 1), similarly to square plates in
(Kolakowski and Jankowski, 2020, 2021), with the following geometric dimensions and material
constants

a = 150mm h = 1mm E = 200GPa ν = 0.3

for five different values of the parameter of curvature k = a2/(Rh), where R is the radius of
curvature of the cylindrical panel.

Fig. 1. Cylindrical square panel loaded transversely
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The perfect plate is fixed along all edges and subject to the transverse load q. The boundary
conditions for the theories under consideration are given in detail in Appendix 2.
The nonlinear equilibrium equations for both theories (A.25) and (A.31) can be written

together as

533π4

3200
ζ3 +

2π4

3(1 − ν2)
αΘζ −

15π2

64
kζ2 +

9

64
k2ζ − qΘ = 0 (3.1)

where: qΘ = qΘa4/(Eh4), ζ =W/h, αΘ are values of the reduction factor.
In detailed calculations, five values of the parameter of curvature were assumed, i.e., k = 0,

12, 24, 36, 48. For k = 0, the panel becomes a plate. According to (Volmir, 1967) for small
angles Θ (Fig. 1), i.e., low values of the parameter of curvature k (i.e. for 0 ¬ k ¬ 12), this
parameter can be also determined from the approximate relationship k = 8H/h (Fig. 1b).
In Fig. 2, a dependence of the transverse load qC on the dimensionless deflection ζ for the

assumed 5 values of the coefficient of curvature k is presented for the CST. The curve k = 12
coincides with the curve k = 0 (i.e., for a square plate) up to the deflection ζ ¬ 1, whereas the
curves k = 24, k = 36 and k = 48 lie above the curve k = 0. This means that for ζ ¬ 1, the
panel carries a greater load qC than the plate, except for the panels for k = 12. For ζ ¬ 1.7,
the curves for k = 12 and k = 24 lie below k = 0. In turn, for ζ ¬ 2.2 only the curve k = 48
lies above k = 0, and for ζ ≈ 3, the curves intersect. This results in a selection of two deflection
values: ζ = 1 and ζ = 2 in order to determine components and resultants of transverse forces.
For the first of these values, the power exponent in transverse forces (A.27), (A.28) and (A.33)
does not play any role.

Fig. 2. Dependence of the transverse load qC on the dimensionless deflection ζ

Tables 1 and 2 present the results of calculations according to the CST and the FSDT
for the assumed dimensionless deflections ζ = 1.0 and ζ = 2.0 and the adopted parameters
of curvature k. For the fixed deflection and the curvature parameter, the values of transverse

loads qC , qF , the maximal absolute values of bending components |Q̂Cx |max, |Q̂
C
y |max, membrane

components |QCx |max, |Q
C
y |max and total components |Q̃

C
x |max, |Q̃

C
y |max of transverse forces were

determined for the CST. For the FSDT, the value of the reduction coefficient α and only the

maximal absolute values of total transverse forces |Q̃Fx |max and |Q̃
F
y |max were given. Membrane

components (A.34), according to the CST and the FSDT, are identical (see also (Kolakowski
and Jankowski, 2020, 2021).
As can be easily seen in Table 1, the transverse load qC for k = 24 is almost 1.3 times

greater than for k = 0, 2.1 times greater for k = 36 and 3.4 times greater for k = 48, re-

spectively. The values of bending components (A.27) |Q̂Cx |max, |Q̂
C
y |max for the CST do not

depend on the parameter k. An identical situation takes place for (A.33) |Q̂Fx |max, |Q̂
F
y |max

in the FSDT. Membrane components (A.28), (A.34) for both the theories are identical (i.e.,
|QCx |max = |Q

F
x |max, |Q

C
y |max = |Q

F
y |max), but are dependent on the parameter k. That means
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Table 1. Values of loads of the square plate and absolute maximal values of the components
and total transverse forces for ζ = 1.0

Theory Symbol Unit
k

0 12 24 36 48

CST

αC – 1.0
qC MPa 0.0346 0.0316 0.0447 0.0737 0.1187

|Q̂Cx |max N/mm 1.245 1.245 1.245 1.245 1.245

|Q̂Cy |max N/mm 1.245 1.245 1.245 1.245 1.245

|QCx |max N/mm 0.313 0.278 0.304 0.360 0.423

|QCy |max N/mm 0.313 0.281 0.848 1.421 1.996

|Q̃Cx |max N/mm 1.530 1.523 1.528 1.546 1.574

|Q̃Cy |max N/mm 1.530 0.965 0.607 0.631 0.798

|QCx |max/|Q̃
C
x |max – 0.21 0.18 0.20 0.23 0.27

|QCy |max/|Q̃
C
y |max – 0.21 0.29 1.40 2.25 2.50

FSDT

αF – 0.9995
qF MPa 0.0346 0.0316 0.0447 0.0737 0.1187

|Q̃Fx |max N/mm 1.296 1.287 1.293 1.314 1.346

|Q̃Fy |max N/mm 1.296 0.729 0.552 0.631 1.019

|QFx |max/|Q̃
F
x |max – 0.24 0.22 0.24 0.27 0.31

|QFy |max/|Q̃
F
y |max – 0.24 0.39 1.54 2.25 1.96

Table 2. Values of loads of the square plate and absolute maximal values of the components
and total transverse forces for ζ = 2.0

Theory Symbol Unit
k

0 12 24 36 48

CST

αC – 1.0
qC MPa 0.108 0.080 0.084 0.120 0.188

|whQCx |max N/mm 2.49 2.49 2.49 2.49 2.49

|Q̂Cy |max N/mm 2.49 2.49 2.49 2.49 2.49

|QCx |max N/mm 2.50 2.32 2.23 2.27 2.44

|QCy |max N/mm 2.50 0.81 2.25 4.50 6.79

|Q̃Cx |max N/mm 4.87 4.76 4.71 4.74 4.82

|Q̃Cy |max N/mm 4.87 2.56 1.75 2.15 4.33

|QCx |max/|Q̃
C
x |max – 0.51 0.49 0.47 0.48 0.51

|QCy |max/|Q̃
C
y |max – 0.51 0.32 1.29 2.09 1.57

FSDT

αF – 0.9995
qF MPa 0.108 0.080 0.084 0.120 0.188

|Q̃Fx |max N/mm 4.41 4.29 4.24 4.27 4.36

|Q̃Fy |max N/mm 4.41 2.12 1.74 2.50 4.79

|QFx |max/|Q̃
F
x |max – 0.57 0.54 0.53 0.53 0.56

|QFy |max/|Q̃
F
y |max – 0.57 0.38 1.29 1.80 1.42
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that the resultant transverse forces |Q̃Cx |max, |Q̃
C
y |max depend on the value of k. Moreover, the

ratios |QΘx |max/|Q̃
Θ
x |max, |Q

Θ
y |max/|Q̃

Θ
y |max (where Θ = C for the CST and F for the FSDT)

are given.
In order to improve the readability, the results from Tables 1 and 2 are shown in the figures:

for ζ = 1.0 in Figs. 3-4 and ζ = 2.0 in Figs. 5-6, correspondingly.

Fig. 3. Transverse forces: (1) – |Q̂Cx |max, (2) – |Q
C
x |max, (3) – |Q̃

C
x |max, (4) – |Q̃

F
x |max as a function of

the parameter of curvature k for ζ = 1.0

Fig. 4. Transverse forces: (1) – |Q̂Cy |max, (2) – |Q
C
y |max, (3) – |Q̃

C
y |max, (4) – |Q̃

F
y |max as a function of

the parameter of curvature k for ζ = 1.0

As can be easily seen for ζ = 1.0 in Fig. 3, the component |Q̂Cx |max for all k is more than

3 times higher than |QCx |max. Moreover, the component |Q̃
C
x |max is higher than the bending

components and the resultant |Q̃Fx |max. In Fig. 4, the components |Q̃
C
x |max ­ |Q

C
y |max for

k ¬ 24 and the opposite relationships hold for higher values. For k = 0, the resultants |Q̃Cy |max

and |Q̃Fy |max are the greatest among all values of k, and for k ­ 12, they are lower than the

bending components |Q̂Cy |max.

In Fig. 5 for ζ = 2.0, the bending components |Q̂Cx |max do not depend on the parameter k,

and, what is more, the following relationships hold: |Q̂Cx |max ≈ |Q
C
x |max, |Q̃

C
x |max > |Q̃

F
x |max

and 2|Q̂Cx |max ≈ |Q̃
C
x |max. In Fig. 6, for k = 0, we have the relationships: |Q̂

C
y |max ≈ |Q

C
y |max

and |Q̃Cy |max > |Q̃
F
y |max, as well as 2|Q̂

C
y |max ≈ |Q̃

C
x |max. For k = 12, the membrane com-

ponent |QCy |max is the lowest and it increases with an increase in k. For k ­ 36, we have

|QCy |max > |Q̃
C
y |max.
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Fig. 5. Transverse forces: (1) – |Ĉx |max, (2) – |Q
C
x |max, (3) – |Q̃

C
x |max, (4) – |Q̃

F
x |max as a function of the

parameter of curvature k for ζ = 2.0

Fig. 6. Transverse forces: (1) – |Q̂Cy |max, (2) – |Q
C
y |max, (3) – |Q̃

C
y |max, (4) – |Q̃

F
y |max as a function of

the parameter of curvature k for ζ = 2.0

Only for k = 36 and k = 48, we have |Q̃Cy |max ¬ |Q̃
F
y |max (Figs. 4 and 6). In the remaining

cases |Q̃Cδ |max > |Q̃
F
δ |max, where δ = x, y.

For ζ = 1.0 and for all k, we have 2|Q̂Cx |max ≈ |Q̃
C
x |max (see Fig. 3). Moreover, for k = 0

and k = 36, we have 1.2|Q̂Cy |max ≈ |Q̃
C
y |max, and for k = 48 – 1.6|Q̂

C
y |max ≈ |Q̃

C
y |max, whereas

for k = 12 and k = 24 – |Q̂Cy |max > |Q̃
C
y |max (Fig. 4). For ζ = 2.0, similarly as for ζ = 1.0,

2|Q̂Cx |max ≈ |Q̃
C
x |max holds (Fig. 5). For k = 12, k = 24, k = 36, we have |Q̂

C
y |max ≈ |Q̃

C
y |max,

whereas for k = 0, 48 – 1.8|Q̂Cy |max ≈ |Q̃
C
y |max (Fig. 6). This juxtaposition shows that the

relations between bending components of transverse forces and resultants of transverse forces are
complex for the panel (see (A.27), (A.28), (A.33) and (A.34)). Thus, in nonlinear problems, the
resultants of transverse forces, which should be used in failure criteria for laminated structures,
ought to be determined.

Tables 1 and 2 also give the ratios of membrane components to resultants of transverse forces

|QΘx |max/|Q̃
Θ
x |max and |Q

Θ
y |max/|Q̃

Θ
y |max (where Θ = C for the CST and F for the FSDT). For

|QΘy |max/|Q̃
Θ
y |max and k ­ 24, the ratios are higher than 1. This means that the maximal

absolute membrane components are greater than the maximal absolute bending components
and have opposite signs.
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4. Conclusions

Bending and membrane components and resultants of transverse forces for an isotropic square
panel loaded transversely for different values of curvature within the framework of the nonlinear
CST and FSDT have been analyzed. The bending components within the FSDT are accompanied
by transverse deformations, whereas the cross-section is perfectly rigid for the membrane com-
ponents. This shows the duality of assumptions within the FSDT. For the CST, cross-sections
are non-deformable for the membrane and bending components of transverse forces.
Attention was drawn to the components and resultants of transverse forces for an isotropic

cylindrical panel in order to show the influence of curvatures on their values on a simple example.
According to the authors, in the case of laminated structures, the resultants of transverse forces
should be considered in order to correctly describe the phenomenon of delamination.

Appendix

A1. Fundamental equations for cylindrical panels according to the FSDT and the CST

In (Reddy, 2004, 2011; Vasiliev, 2000; Vasiliev and Lurie, 1992; Endo and Kimura, 2007;
Kim et al., 2009; Park and Choi, 2018; Shimpi and Patel, 2006; Kolakowski and Jankowski,
2020, 2021; Volmir, 1972), the equations for three plate theories, namely: the first-order shear
deformation plate theory (FSDT), the classical plate theory (CPT) and the simple first-order
shear deformation theory (S-FSDT), were derived. The equilibrium equations and the boundary
conditions were obtained within a variational approach.
This Appendix presents only the fundamental equations of the first two theories adopted to

the theory of low-profile shells. The CPT for shells is referred to as Kirchhoff-Love’s classical
shell theory (CST).
The geometric relationships for the FSDT are assumed in the form (Reddy, 2004, 2011;

Volmir, 1972)

εx = u,x +
1

2
w2,x εy = v,y +

1

2
w2,y −

w

R
2εxy = γxy = u,y + v,x + w,xw,y

(A.1)

and

κx = −ψx,x κy = −ψy,y κxy = −(ψx,y + ψy,x) (A.2)

where: u, v,w are components of the plate displacement vector along the directions of the x, y, z
axes, respectively, ψxψy – angles of rotation of the transverse normal with respect to bending
around the x, y axis, respectively, xy – middle plane before buckling, R – radius of cylindrical
panels. In addition, the following notations are introduced, e.g., u,x = ∂u/∂x.
In the FSDT for shells, the same as for plates, it is assumed that the total angles of rotation

of the normal to the middle surface in two planes are (Kolakowski and Jankowski, 2020, 2021;
Volmir, 1972)

w,x = ψx + βx w,y = ψy + βy (A.3)

where βx, βy are transverse shear angles.
The inner cross-sectional forces can be expressed as (Kolakowski and Jankowski, 2020, 2021;

Volmir, 1972)

Nx =
Eh

1− ν2
(εx + νεy) Ny =

Eh

1− ν2
(εy + νεx) Nxy = Ghγxy (A.4)
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MFx = −D(ψx,x + νψy,y) MFy = −D(ψy,y + νψx,x)

MFxy = −D
1− ν

2
(ψx,y + ψy,x)

(A.5)

Q̂Fx = K
2Gh(w,x − ψx) Q̂Fy = K

2Gh(w,y − ψy) (A.6)

where K is the shear correction factor, and, moreover, the upper index F is introduced for the
FSDT.
The system of equations (A.1) can be reduced to the equation of inseparability/continuity

of deformations (Reddy, 2004, 2011; Kolakowski and Jankowski, 2021; Volmir, 1967)

∇∇F ≡ F,xxxx + 2F,xxyy + F,yyyy = E
(
w2,xy −w,xxw,xy −

w,xx
R

)
(A.7)

where the Airy force function F was introduced

Nx = σxh = F,yy Ny = σyh = F,xx Nxy = τxyh = −F,xy (A.8)

Equation (A.7) is linear with respect to F and nonlinear with respect to w.

A1.1. FSDT

According to the FSDT, the equilibrium equations for a cylindrical panel in variational terms
are of the form (Kolakowski and Jankowski, 2020, 2021; Volmir, 1972)

l∫

0

b∫

0

(Nx,x +Nxy,y)δu dx dy = 0

l∫

0

b∫

0

(Nxy,x +Ny,y)δv dx dy = 0

l∫

0

b∫

0

[
Q̂Fx,x + Q̂

F
y,y +

Ny
R
+ (Nxw,x +Nxyw,y),x + (Nxyw,x +Nyw,y),y + q

]
δw dx dy = 0

l∫

0

b∫

0

(MFx,x +M
F
xy,y − Q̂

F
x )δψx dx dy = 0

l∫

0

b∫

0

(MFxy,x +M
F
y,y − Q̂

F
y )δψy dx dy = 0

(A.9)

The first two equations of equilibrium are identity-satisfied by the force function F (A.8).
The last two relationships in (A.9) give the bending components of transverse forces (Ko-

lakowski and Jankowski, 2020, 2021)

Q̂Fx =M
F
x,x +M

F
xy,y Q̂Fy =M

F
y,y +M

F
xy,x (A.10)

These components depend on the derivatives of inner bending moments (A.5). The transverse
shear angles βx, βy in (A.3) correspond only to the bending components.
In turn, the membrane components of transverse forces were introduced, analogously to

(Kolakowski and Jankowski, 2020, 2021)

Q
F
x = Nxw,x +Nxyw,y Q

F
y = Nyw,y +Nxyw,x (A.11)

The membrane components of transverse forces depend on the projections of membrane
forces on the transverse direction and do not affect membrane deformations. This means that
the membrane components are not accompanied by deformations, unlike the bending components
(Kolakowski and Jankowski, 2021).
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In accordance with (A.10) and (A.11), a concept of resultants of total transverse forces Q̃Fx
and Q̃Fy was introduced and defined as

Q̃Fx = Q̂
F
x +Q

F
x = (M

F
x,x +M

F
xy,y) + (Nxw,x +Nxyw,y)

Q̃Fy = Q̂
F
y +Q

F
y = (M

F
y,y +M

F
xy,x) + (Nyw,y +Nxyw,x)

(A.12)

Considering (A.12) in the third relationship (A.9), the following equilibrium equation is obtained

l∫

0

b∫

0

[
(Q̂Fx,x + Q̂

F
y,y) + (Q

F
x,x +Q

F
y,y) +

Ny
R
+ q
]
δw dx dy = 0 (A.13)

As can be easily seen, the terms corresponding to the membrane and bending derivatives of
transverse forces, the circumferential force related to the radius and the transverse load q occur
in the above equation.
It follows from relations (A.5) and (A.6) that the bending components of transverse forces Q̂Fx

and Q̂Fy are linearly dependent on the variables ψx, ψy, w, whereas we have nonlinear relationships

of the variables F,w from formulas (A.8), (A.9)3 for the membrane components Q
F
x and Q

F
y .

Thus, equation (A.13) depends in the third power on w.

A1.2. CST

In the classical shell theory (i.e., Kirchhoff-Love’s theory) in (A.3), it is assumed that
βx = βy = 0 (i.e., w,x = ψx, w,y = ψy), and, moreover, the transverse forces are disregarded
(A.6).
Considering the above for the CST in (A.5), we have

MCx = −D(w,xx + νw,yy) MCy = −D(w,yy + νw,xx)

MCxy = −D(1− ν)w,xy
(A.14)

where the upper index C denotes the CST.
After considering the above-mentioned relationships, the equilibrium equation is of the form

(Kolakowski and Jankowski, 2020, 2021; Volmir, 1967, 1972)

l∫

0

b∫

0

[
MCx,xx + 2M

C
xy,xy +M

C
y,yy + (Nxw,x +Nxyw,y),x

+ (Nxyw,x +Nyw,y),y +
Ny
R
+ q
]
δw dx dy = 0

(A.15)

The second equation is an equation of inseparability (A.7).
The CPT defines Kirchhoff’s substitutive transverse forces

Q̂Cx =M
C
x,x + 2M

C
xy,y Q̂Cy =M

C
y,y + 2M

C
xy,x (A.16)

Identical to the FSDT, the membrane components of transverse forces are defined

Q
C
x = Q

F
x = Nxw,x +Nxyw,y Q

C
y = Q

F
y = Nyw,y +Nxyw,x (A.17)

The above components of transverse forces are, therefore, membrane components of Kirch-
hoff’s forces and have the same structure as for the FSDT. According to (A.16) and (A.17),
Kirchhoff’s total transverse forces Q̃Cx and Q̃

C
y for the CPT are written as

Q̃Cx = Q̂
C
x +Q

C
x = (M

C
x,x + 2M

C
xy,y) + (Nxw,x +Nxyw,y)

Q̃Cy = Q̂
C
y +Q

C
y = (M

C
y,y + 2M

C
xy,x) + (Nyw,y +Nxyw,x)

(A.18)
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Considering the above, equilibrium equation (A.15) finally takes the form

l∫

0

b∫

0

[
(Q̂Cx,x + Q̂

C
y,y) + (Q

C
x,x +Q

C
y,y) + q +

Ny
R

]
δw dx dy = 0 (A.19)

Similarly to the FSDT, the bending components of transverse forces Q̂Cx and Q̂
C
y are linearly

dependent on the variable w, whereas the membrane components Q
C
x and Q

C
y are nonlinearly

dependent on the variables F,w. Comparing the formulas for the bending components of trans-
verse forces (A.10) and (A.16), it can be seen that the numerical factor for the second term
equals 1 for the FSDT, and it is 2 for the CST, respectively.

A2. Solution to the nonlinear problem of transverse distributions of shear forces in
a square cylindrical panel subject to transverse load

In the work, a square isotropic cylindrical panel fixed along all edges and subject to the
constant transverse load q (Fig. 1) is considered. It is assumed that the square panel with
dimensions a, thickness h and radius R has the following material constants: Young’s modulus E
and Poisson’s ratio ν. Considerations are limited to the elastic range. The problem has been
solved within the first nonlinear approximation.

A2.1. Solution to the equation of inseparability of deformations

The equation of inseparability of deformations (A.7) is identical for both the theories under
consideration: FSDT and CST.

The deflection of the square plate fixed along all edges within the first approximation is
approximated with the following function (Kolakowski and Jankowski, 2021; Volmir, 1967, 1972)

w =W sin2
πx

a
sin2

πy

a
(A.20)

which meets the following boundary conditions

w(x = 0) = w(x = a) = w(y = 0) = w(y = a) = 0

w,x(x = 0) = w,x(x = a) = w,y(y = 0) = w,y(y = a) = 0
(A.21)

After substitution of (A.20) into (A.7), the Airy function F is determined

F = EhW 2
( 1
32
cos
2πx

a
+
1

32
cos
2πy

a
−
1

512
cos
4πx

a
−
1

512
cos
4πy

a

+
1

800
cos
4πx

a
cos
2πy

a
+
1

800
cos
2πx

a
cos
4πy

a
−
1

64
cos
2πx

a
cos
2πy

a

)

−
EWha2

16π2R
cos
2πx

a
+
EWha2

64π2R
cos
2πx

a
cos
2πy

a

(A.22)

and then, according to (A.8), the components of membrane forces are determined
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Nx = F,yy = EhW
2
(π
a

)2(
−
1

8
cos
2πy

a
+
1

32
cos
4πy

a
−
1

200
cos
4πx

a
cos
2πy

a

−
1

50
cos
2πx

a
cos
4πy

a
+
1

16
cos
2πx

a
cos
2πy

a

)
−
EWh

16R
cos
2πx

a
cos
2πy

a

Ny = F,xx = EhW
2
(π
a

)2(
−
1

8
cos
2πx

a
+
1

32
cos
4πx

a
−
1

50
cos
4πx

a
cos
2πy

a

−
1

200
cos
2πx

a
cos
4πy

a
+
1

16
cos
2πx

a
cos
2πy

a

)
−
EWh

16R
cos
2πx

a
cos
2πy

a

+
EWh

4R
cos
2πx

a

Nxy = −F,xy = −EhW
2
(π
a

)2( 1
100
sin
4πx

a
sin
2πy

a
+
1

100
sin
2πx

a
sin
4πy

a

−
1

16
sin
2πx

a
sin
2πy

a

)
+
EWh

16R
sin
2πx

a
sin
2πy

a

(A.23)

Force functions (A.23) satisfy the following boundary conditions (Kolakowski and Jankowski,
2021; Volmir, 1967)

u(x = 0) = u(x = a) = const Nxy(x = 0) = Nxy(x = a) = 0

v(y = 0) = v(y = a) = const Nxy(y = 0) = Nxy(y = a) = 0
(A.24)

.0.1. A2.2. Solution to the nonlinear stability problem for the CST

The nonlinear problem for the CST (A.15) or (A.19) with respect to w has been solved
with the Bubnov-Galerkin method. After introduction of force function (A.23) and the deflec-
tion function w in (A.20), a nonlinear equilibrium equation of the square panel subject to the
transverse load q for the CST (Kolakowski and Jankowski, 2021; Volmir, 1967) was obtained

533π4

3200
ζ3 +

2π4

3(1 − ν2)
ζ −
15π2

64
kζ2 +

9

64
k2ζ − qC = 0 (A.25)

where

qC =
qCa4

Eh4
k =

a2

Rh
ζ =

W

h
(A.26)

In this case, we have the nonlinear problem of deflection of a thin panel accompanied by an
appearance of membrane forces.

The determined dimensionless deflections ζ for k = 0 (i.e., for the plate) for the assumed
value of the transverse load from equation (A.25), within the first order of approximation, are
3.5% less than the exact solution for the plate (Kolakowski and Jankowski, 2021).

Kirchhoff’s substitutive transverse forces (A.16), i.e., the bending components of transverse
forces, after considering (A.20), are expressed with the dependencies

Q̂Cx =M
C
x,x + 2M

C
xy,y = 2DW

(π
a

)3(
sin
2πx

a
− (3− ν) sin

2πx

a
cos
2πy

a

)

Q̂Cy =M
C
y,y + 2M

C
xy,x = 2DW

(π
a

)3(
sin
2πy

a
− (3− ν) cos

2πx

a
sin
2πy

a

) (A.27)

As can be easily seen in (A.27), the bending components are linearly dependent on the deflec-
tion W .
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Membrane components (A.17), after consideration (A.20) and (A.23), are of the form

Q
C
x = Nxw,x +Nxyw,y = −EW

3h
(π
a

)3[(1
8
cos
2πy

a
−
1

32
cos
4πy

a
+
1

200
cos
4πx

a
cos
2πy

a

+
1

50
cos
2πx

a
cos
4πy

a
−
1

16
cos
2πx

a
cos
2πy

a

)
sin
2πx

a

(1
2
−
1

2
cos
2πy

a

)

+
( 1
100
sin
4πx

a
sin
2πy

a
+
1

100
sin
2πx

a
sin
4πy

a

−
1

16
sin
2πx

a
sin
2πy

a

)(1
2
−
1

2
cos
2πx

a

)
sin
2πy

a

]

−
EW 2h

16R

π

a
cos
2πx

a
cos
2πy

a
sin
2πx

a

(1
2
−
1

2
cos
2πy

a

)

+
EW 2h

16R

π

a
sin
2πx

a
sin
2πy

a

(1
2
−
1

2
cos
2πx

a

)
sin
2πy

a

Q
C
y = Nyw,y +Nxyw,x = −EW

3h
(π
a

)3[(1
8
cos
2πx

a
−
1

32
cos
4πx

a
+
1

50
cos
4πx

a
cos
2πy

a

+
1

200
cos
4πy

a
−
1

16
cos
2πx

a
cos
2πy

a

)(1
2
−
1

2
cos
2πx

a

)
sin
2πy

a
+
( 1
100
sin
4πx

a
sin
2πy

a

+
1

100
sin
2πx

a
sin
4πy

a
−
1

16
sin
2πx

a
sin
2πy

a

)
sin
2πx

a

(1
2
−
1

2
cos
2πy

a

)]

+
EW 2h

R

π

a

(
−
1

16
cos
2πx

a
cos
2πy

a
+
1

4
cos
2πx

a

)(1
2
−
1

2
cos
2πx

a

)
sin
2πy

a

+
EW 2h

16R

π

a
sin
2πx

a
sin
2πy

a
sin
2πx

a

(1
2
−
1

2
cos
2πy

a

)

(A.28)

Membrane components (A.28) are nonlinearly dependent on the deflection W or, more pre-
cisely, they depend on the third power of W . The total components of transverse forces, i.e.,
Kirchhoff’s total substitutive forces, are expressed in formulas (A.18).

.0.2. A2.3. Solution to the nonlinear stability problem for the FSDT

For the FSDT, a solution of the system of the last three equations (A.9) is foreseen as (A.20)
with respect to the variable w and for the variables ψx, ψy in the form

ψx = Ψ
F
x sin

2πx

a
sin2

πy

a
ψy = Ψ

F
y sin

2 πx

a
sin
2πy

a
(A.29)

After substituting variables (A.20), (A.23) and (A.29), the following dependencies are obtained

ΨFx = Ψ
F
y =Wα

(π
a

)2
(A.30)

and

533π4

3200
ζ3 +

2π4

3(1 − ν2)
αζ −

15π2

64
kζ2 +

9

64
k2ζ − qF = 0 (A.31)

where

qF =
qFa4

Eh4
α =

1

1 + η
η =

2π2

3(1 − ν)K2

(h
a

)2
(A.32)

The bending components of transverse forces according to (A.10) are

Q̂Fx =M
F
x,x +M

F
xy,y = 2DW

(π
a

)3(
sin
2πx

a
− 2 sin

2πx

a
cos
2πy

a

)
α

Q̂Fy =M
F
y,y +M

F
xy,x = 2DW

(π
a

)3(
sin
2πy

a
− 2 cos

2πx

a
sin
2πy

a

)
α

(A.33)
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As for the CST, the bending components are linearly dependent on the deflectionW . Comparing
(A.33) to (A.27), it can be easily seen that there is a factor of 2 in the FSDT, and a factor (3−ν)
for the CST at the second term in the parentheses.

The membrane components of transverse forces (A.11) for the FSDT have the same form as
for the CST (A.17), i.e.

Q
F
x = Q

C
x Q

F
y = Q

C
y (A.34)

whereas the components of the total transverse forces are expressed by (A.12), respectively.
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