PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a Reed Bed System for Treatment of Domestic Wastewater using Native Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reed bed system is one types of phytoremediation technology for removing pollutants from the environment. This technology provides an environmentally friendly approach to treating contamination with competitive cost, compared to the physico-chemical treatment. The design of reed bed system is highly important in order to achieve the highest pollutant removal efficiency. The design of reed bed system affects the natural oxygen transfer from the environment. The reed bed system was proven to have a good efficiency in removing Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), Total Dissolve Solid (TDS), Total Nitrogen (TN) and a number of bacteria. In addition to the oxygen transfer from the environment, the interaction among pollutant-plants-medium-microbes also plays a vital role in the removal of pollutant using the reed bed system. It was suggested that the future related research should accommodate the importance of several environmental conditions to the interaction between pollutant, plants, medium and microbes as well as the impact of those interactions on the pollutant removal efficiency.
Rocznik
Strony
22--28
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
Bibliografia
  • 1. Abdullah, S.R.S., Al-Baldawi, I.A., Almansoory, A.F., Purwanti, I.F., Al-Sbani, N.H., Sharuddin, S.S.N., 2020. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.125932
  • 2. Ahmad, J., Abdullah, S.R.S., Hassan, H.A., Rahman, R.A.A., Idris, M., 2017. Screening of tropical native aquatic plants for polishing pulp and paper mill final effluent. Malaysian J. Anal. Sci. 21, 105–112. https://doi.org/10.17576/mjas-2017–2101–12
  • 3. Ahmad, T., Ahmad, K., Alam, M., 2016. Sustainable management of water treatment sludge through 3’R’ concept. J. Clean. Prod. 124, 1–13. https://doi.org/10.1016/j.jclepro.2016.02.073
  • 4. Al-Baldawi, I.A., Abdullah, S.R.S., Anuar, N., Hasan, H.A., 2018. Phytotransformation of methylene blue from water using aquatic plant (Azolla pinnata). Environ. Technol. Innov. 11, 15–22. https://doi.org/10.1016/j.eti.2018.03.009
  • 5. Bolan, N.S., Park, J.H., Robinson, B., Naidu, R., Huh, K.Y., 2011. Phytostabilization. A green approach to contaminant containment. Adv. Agron. 112, 145–204. https://doi.org/10.1016/B978–0-12–385538–1.00004–4
  • 6. Cossu, R., Haarstad, K., Lavagnolo, M.C., Littarru, P., 2001. Removal of municipal solid waste COD and NH4-N by phyto-reduction: A laboratory-scale comparison of terrestrial and aquatic species at different organic loads. Ecol. Eng. 16, 459–470. https://doi.org/10.1016/S0925–8574(00)00106–3
  • 7. Dakora, F.D., Phillips, D.A., 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245, 35–47. https://doi.org/10.1023/A:1020809400075
  • 8. Darajeh, N., Idris, A., Truong, P., Abdul Aziz, A., Abu Bakar, R., Che Man, H., 2014. Phytoremediation potential of Vetiver system technology for improving the quality of palm oil mill effluent. Adv. Mater. Sci. Eng. 2014. https://doi.org/10.1155/2014/683579
  • 9. Dodane, P.H., Mbéguéré, M., Sow, O., Strande, L., 2012. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal. Environ. Sci. Technol. 46, 3705–3711. https://doi.org/10.1021/es2045234
  • 10. Hasan, H.A., Abdullah, S.R.S., Kofli, N.T., Yeoh, S.J., 2016. Interaction of environmental factors on simultaneous biosorption of lead and manganese ions by locally isolated Bacillus cereus. J. Ind. Eng. Chem. 37, 295–305. https://doi.org/10.1016/j.jiec.2016.03.038
  • 11. Hussain, F., Mustufa, G., Zia, R., Faiq, A., Matloob, M., Rehman Shah, H. ur, Rafique Ali, W., Irfan, J.A., 2018. Constructed Wetlands and their Role in Remediation of Industrial Effluents via Plant-Microbe Interaction – A Mini Review. J. Bioremediation Biodegrad. 09. https://doi.org/10.4172/2155–6199.1000447
  • 12. Imron, M.F., Kurniawan, S.B., Soegianto, A., Wahyudianto, F.E., 2019. Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon 5, e02206. https://doi.org/10.1016/j.heliyon.2019.e02206
  • 13. Ismail, N. ‘Izzati, Abdullah, S.R.S., Idris, M., Hasan, H.A., Halmi, M.I.E., Al Sbani, N.H., Jehawi, O.H., 2019. Simultaneous bioaccumulation and translocation of iron and aluminium from mining wastewater by Scirpus grossus. Desalin. Water Treat. 163, 133–142. https://doi.org/10.5004/dwt.2019.24201
  • 14. Ismail, N. ‘Izzati, Halmi, M.I.E., AL Sbani, N.H., Idris, M., Hasan, H.A., Hashim, M.H., Abdullah, S.R.S., Jehawi, O.H., Sanusi, S.N.A., Sheikh Abdullah, S.R., Idris, M., Abu Hasan, H., Halmi, M.I.E., Hussin AL Sbani, N., Hamed Jehawi, O., Sanusi, S.N.A., Hashim, M.H., 2017. Accumulation of FeAl by Scirpus grossus grown in synthetic bauxite mining wastewater and identification of resistant rhizobacteria. Environ. Eng. Sci. 34, 367–375. https://doi.org/10.1089/ees.2016.0290
  • 15. Ismail, N.I., Sheikh Abdullah, S.R., Idris, M., Hasan, H.A., Al Sbani, N.H., Jehawi, O.H., 2015. Tolerance and survival of scirpus grossus and lepironia articulata in synthetic mining wastewater. J. Environ. Sci. Technol. 8, 232–237. https://doi.org/10.3923/jest.2015.232.237
  • 16. Kantawanichkul, S., Neamkam, P., Shutes, R.B.E., 2001. Nitrogen removal in a combined system: Vertical vegetated bed over horizontal flow sand bed, in: Water Science and Technology. https://doi.org/10.2166/wst.2001.0820
  • 17. Katayon, S., Fiona, Z., Noor, M.J.M.M., Halim, G.A., Ahmad, J., 2008. Treatment of mild domestic wastewater using subsurface constructed wetlands in Malaysia. Int. J. Environ. Stud. https://doi.org/10.1080/00207230601125192
  • 18. Kinidi, L., Salleh, S., 2017. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System. Int. J. Chem. Eng. 2017. https://doi.org/10.1155/2017/1961205
  • 19. Koottatep, T., Polprasert, C., 1997. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Water Sci. Technol. 36, 1–8. https://doi.org/10.1016/S0273–1223(97)00725–7
  • 20. Kumar, B.L., Gopal, D.V.R.S.R.S., 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5, 867–876. https://doi.org/10.1007/s13205–015–0293–6
  • 21. Mahajan, P., Kaushal, J., Upmanyu, A., Bhatti, J., 2019. Assessment of Phytoremediation Potential of Chara vulgaris to Treat Toxic Pollutants of Textile Effluent. J. Toxicol. 2019. https://doi.org/10.1155/2019/8351272
  • 22. Manios, T., Stentiford, E.I., Millner, P.A., 2002. The removal of NH3-N from primary treated wastewater in subsurface reed beds using different substrates. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 37, 297–308. https://doi.org/10.1081/ ESE-120002829
  • 23. Manju, G.N., Raji, C., Anirudhan, T.S., 1998. Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res. https://doi.org/10.1016/S0043–1354(98)00068–2
  • 24. Mehraban, P., Zadeh, A.A., Sadeghipour, H.R., 2008. Iron toxicity in rice (Oryza sativa L.), under different potassium nutrition. Asian J. Plant Sci. 7, 251–259. https://doi.org/10.3923/ajps.2008.251.259
  • 25. Ministry of Science Technology and the Environment Malaysia, 2003. Environmental Quality Report.
  • 26. Mtshali, J.S., Tiruneh, A.T., Fadiran, A.O., 2014. Sewage sludge, Nutrient value, Organic fertilizer, Soil amendment, Sludge reuse, Nitrogen, Phosphorus; Sewage sludge, Nutrient value, Organic fertilizer, Soil amendment, Sludge reuse, Nitrogen, Phosphorus. Resour. Environ. 4, 190–199. https://doi.org/10.5923/j.re.20140404.02
  • 27. Ning, Y.-F., Dong, W.-Y., Lin, L.-S., Zhang, Q., 2017. Current research trend on urban sewerage system in China. IOP Conf. Ser. Earth Environ. Sci. 59, 012048. https://doi.org/10.1088/1755–1315/59/1/012048
  • 28. Purwanti, I.F., Simamora, D., Kurniawan, S.B., 2018a. Toxicity test of tempe industrial wastewater on cyperus rotundus and scirpus grossus. Int. J. Civ. Eng. Technol. 9, 1162–1172.
  • 29. Purwanti, I.F., Tangahu, B.V., Titah, H.S., Kurniawan, S.B., 2019. Phytotoxicity of aluminium contaminated soil to scirpus grossus and typha angustifolia. Ecol. Environ. Conserv. 25, 523–526.
  • 30. Purwanti, I.F., Titah, H.S., Tangahu, B.V., Kurniawan, S.B., 2018b. Design and application of wastewater treatment plant for “pempek” food industry, Surabaya, Indonesia. Int. J. Civ. Eng. Technol. 9, 1751–1765.
  • 31. Reed, M.L.E., Glick, B.R., 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol. https://doi.org/10.1139/w05–094
  • 32. Safronova, V.I., Stepanok, V. V., Engqvist, G.L., Alekseyev, Y. V., Belimov, A.A., 2006. Root-associated bacteria containing 1-aminocyclopropane1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils. https://doi.org/10.1007/s00374–005–0024-y
  • 33. Samer, M., 2015. Biological and Chemical Wastewater Treatment Processes, in: Wastewater Treatment Engineering. InTech. https://doi.org/10.5772/61250
  • 34. Shagol, C.C., Chauhan, P.S., Kim, K.-Y., Lee, S.-M., Chung, J.-B., Park, K.-W., Sa, T.-M., 2011. Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils. Korean J. Soil Sci. Fertil. 44, 58–66. https://doi.org/10.7745/kjssf.2011.44.1.058
  • 35. Sun, G., Zhao, Y.Q., Allen, S.J., 2007. An alternative arrangement of gravel media in tidal flow reed beds treating pig farm wastewater. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270–006–9316–6
  • 36. Tanaka, N., Jinadasa, K.B.S.N., Werellagama, D.R.I.B., Mowjood, M.I.M., Ng, W.J., 2006. Constructed tropical wetlands with integrated submergent-emergent plants for sustainable water quality management. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. https://doi.org/10.1080/10934520600867581
  • 37. Tangahu, B.V., Ningsih, D.A., Kurniawan, S.B., Imron, M.F., 2019. Study of BOD and COD Removal in Batik Wastewater using Scirpus grossus and Iris pseudacorus with Intermittent Exposure System. J. Ecol. Eng. 20, 130–134. https://doi.org/10.12911/22998993/105357
  • 38. Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N., Mukhlisin, M., 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 1–31. https://doi.org/10.1155/2011/939161
  • 39. Tien, W.T.H., Tan, I.A.W., Salleh, S.F., Wahab, N.A., 2018. Phytoremediation of ammoniacal nitrogen in wastewater using Eichhornia crassipes: Tolerance limit and pH study. Malaysian Appl. Biol.
  • 40. Titah, H.S., Purwanti, I.F., Tangahu, B.V., Kurniawan, S.B., Imron, M.F., Abdullah, S.R.S., Ismail, N. ‘Izzati, 2019. Kinetics of aluminium removal by locally isolated Brochothrix thermosphacta and Vibrio alginolyticus. Journal of Environmental Manaement, 238, 194–200. https://doi.org/10.1016/j.jenvman.2019.03.011
  • 41. Titah, H.S., Rozaimah, S., Abdullah, S.R.S., Idris, M., Anuar, N., Basri, H., Mukhlisin, M., Tangahu, B.V., Purwanti, I.F., Kurniawan, S.B., 2018. Arsenic resistance and biosorption by isolated Rhizobacteria from the roots of Ludwigia octovalvis. Int. J. Microbiol. 2018, 1–10. https://doi.org/10.1155/2018/3101498
  • 42. Vlaev, L., Petkov, P., Dimitrov, A., Genieva, S., 2011. Cleanup of water polluted with crude oil or diesel fuel using rice husks ash. J. Taiwan Inst. Chem. Eng. 42, 957–964. https://doi.org/10.1016/j.jtice.2011.04.004
  • 43. Wulandari, L.K., Bisri, M., Harisuseno, D., Yuliani, E., 2019. Reduction of BOD and COD of by using stratified filter and constructed wetland for blackwater treatment. IOP Conf. Ser. Mater. Sci. Eng. 469. https://doi.org/10.1088/1757–899X/469/1/012024
  • 44. Yasmin, M.H.A., Idris, M., Abdullah, S.R.S., 2016. Application of plant-based reed for potable water, in Tasik Chini, Pahang. AIP Conf. Proc. 1784. https://doi.org/10.1063/1.4966870
  • 45. Zhang, X., Wang, Z., Liu, X., Hu, X., Liang, X., Hu, Y., 2013. Degradation of diesel pollutants in Huangpu-Yangtze River estuary wetland using plantmicrobe systems. Int. Biodeterior. Biodegrad. 76, 71–75. https://doi.org/10.1016/j.ibiod.2012.06.017
  • 46. Zhao, Y.Q., Sun, G., Allen, S.J., 2004. Purification capacity of a highly loaded laboratory scale tidal flow reed bed system with effluent recirculation. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2004.03.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f4329f2-2c60-4bcf-addb-a6412b69baa7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.