PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polymer Inclusion Membrane's 10% Copoly-EEGDMA-Containing Membrane's Lifetime and Optimization for Phenol Transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, Polymer Inclusion Membrane (PIM) was created using copoly-eugenol ethylene glycol dimethacrylate (co-EEGDMA) 10% as a carrier, dibenzyl ether (DBE) as a plasticizer, and polyvinyl chloride (PVC) as the base polymer. Following that, the membrane was used in phenol transport experiments under a variety of circumstances, including pH of the phenol in the source phase, NaOH concentrations in the receiving phase, and transport times. The ability and stability of the membrane were also evaluated under several influencing parameters such as plasticizer concentration, salt concentration, and PIM membrane age (lifetime). Phenol concentration was analyzed using UV-Vis spectrophotometer, and PIM membrane was characterized before and after use using Fourier-transform infrared spectroscopy (FT-IR). According to the testing findings, phenol had an ideal pH of 5.5 in the source phase and a concentration of 34.07% in the receiving phase. Additionally, it was discovered that the ideal NaOH content in the receiving phase was 0.5 M with a phenol concentration of 58.24%. The experiments with varied transport times demonstrated that the optimum time was 48 hours with the phenol concentration of 90.82% in the receiving phase. The results of UV-Vis spectrophotometry analysis demonstrated that phenol transportation of 91.54% was achieved with the use of 0.3132 g plasticizer. Under ideal circumstances of pH 5.5 of phenol solution in the source phase, 0.5 M NaOH concentration, and phenol transport time of 48 hours, a membrane prepared from PVC as a base polymer, 10% co-EEGDMA as a carrier, and DBE as a plasticizer can be used to transport phenol. The membrane’s stability was only 24 days when no NaNO3 salt was added, but it grew to 108 days when 0.01 M NaNO3 salt was added.
Słowa kluczowe
Twórcy
  • Departement of Chemistry, Universitas Lampung, Bandar Lampung 35145, Indonesia
  • Departement of Chemistry, Universitas Lampung, Bandar Lampung 35145, Indonesia
  • Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja, Bali, Indonesia
Bibliografia
  • 1. Ariesmayana A., Zaman A.S. 2018. Efisiensi sistem evaporator dan karbon aktif untuk mengurangi kadar fenol pada hasil air buangan produksi PT. Latinusa, tbk. Jurnalis, 1(1), 74–86. https://ejournal.lppm-unbaja.ac.id/index.php/jls/article/view/192
  • 2. Asrami M.R., Saien J. 2019. Salt effects on liquidliquid equilibria of water + phenol + (propan-2-yl) benzene + salts systems. Journal of Chemical & Engineering Data, 64, 2414–2422. https://doi.org/10.1021/acs.jced.8b01202
  • 3. Benosmane N., Boutemeur B., Hamdi S.M., Hamdi M. 2018. Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA. Applied Water Science, 8(17), 1–6. https://link.springer.com/article/10.1007/s13201–018–0643–8
  • 4. Chaouqi Y., Ouchn R., Eljaddi T., Jada A., El M. 2019. New polymer inclusion membrane containing NTA as carrier for the recovery of chromium and nickel from textiles wastewater. Materials Today. Proceedings, 13, 698–705. https://hal.science/hal-03047161
  • 5. Cho Y., Cattrall R.W., Kolev S.D. 2018. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water. Journal of Hazardous Materials, 341, 297–303. https://www.sciencedirect.com/science/article/abs/pii/S0304389417305770
  • 6. Croft C.F., Almeida M.I.G.S., Cattrall R.W., Kolev S.D. 2018. Separation of lanthanum (III), gadolinium (III) and ytterbium (III) from sulfuric acid solutions by using a polymer inclusion membrane. Journal of Membrane Science, 545, 259–265. https://www.researchgate.net/publication/320128939_Separa-tion_of_LanthanumIII_GadoliniumIII_and_Yt-terbiumIII_from_Sulfuric_Acid_Solutions_by_Using_a_Polymer_Inclusion_Membrane
  • 7. Dakhil I.H. 2013. Removal of phenol from industrial wastewater using sawdust. Research Inventy International Journal of Engineering and Science, 3(1), 25–31. https://www.researchinventy.com/papers/v3i1/E031025031.pdf
  • 8. Djunaidi M.C., Wenten I.G. 2019. Synthesis of eugenol-based selective membrane for hemodialysis. IOP Conference Series Materials Science and Engineering, 509, 012069. https://doi:10.1088/1757–899X/509/1/012069
  • 9. Djunaidi M.C., Wibawa P.J., Murti R.H. 2018. Synthesis of a novel carrier compound thiazoethyl methyl eugenoxyacetate from eugenol and its use in the bulk liquid membrane technique. Indonesian Journal Chemistry, 18, 121–126. https://doi:10.22146/ijc.25075
  • 10. Febriasari A., Siswanta D., Kiswandono A.A., Aprilita N.H. 2016. Evaluation of phenol transport using polymer inclusion membrane (PIM) with polyeugenol as a carrier. Jurnal Rekayasa Kimia dan Lingkungan, 11, 99–106. https://doi.org/10.23955/rkl.v11i2.5112
  • 11. Hikmah S.A., Rahim E.A., Musafira. 2018. Synthesis and Characteristics of Polyeugenol from Eugenol Using Catalyst H2SO4-CH3COOH. KOVALEN Jurnal Riset Kimia, 4(3), 285–296. https://www.academia.edu/49636197/Sintesis_Dan_Karakteristik_Polieugenol_Dari_Eugenol_Menggunakan_Katalis_H2SO4_CH3COOH
  • 12. Kaya A., Onac C., Alpoguz H.K., Yilmaz A., Atar N. 2016. Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water. Chemical Engineering Journal, 283, 141–149. https://www.sciencedirect.com/science/article/abs/pii/S1385894715010189
  • 13. Kazemi P., Peydayeshb M., Bandegib A., Mohammadia T., Bakhtiari O. 2014. Stability and extraction study of phenolic waste water teatment by supported liquid membrane using tributylphosphate and sesame oil as liquid membrane. Chemical Engineering Research and Design, 92, 375–383. https://www.sciencedirect.com/science/article/abs/pii/S0263876213003183
  • 14. Kiswandono A.A., Nusantari C.S., Rinawati R., Hadi S. 2022. Optimization and evaluation of polymer inclusion membranes based on PVC containing copoly-EDVB 4% as a carrier for the removal of phenol solutions. Membranes, 12, 1–13. https://doi.org/10.3390/membranes12030295
  • 15. Kiswandono A.A., Siswanta D., Aprilita N.H., Santosa S.J. 2012. Transport of phenol through polymer inclusion membrane (pim) using copoly (eugenoldvb) as membrane carriers. Indonesian Journal Chemistry, 12(2), 105–112. https://jurnal.ugm.ac.id/ijc/article/view/21348/14053
  • 16. Kiswandono A.A. 2016. Metode membran cair untuk pemisahan. Analytical and Environmental Chemistry, 1, 74–88. https://jurnal.fmipa.unila.ac.id/analit/article/view/1625/1266
  • 17. Kiswandono A.A., Supriyanto, Nuryaman A., Siswanta D., Aprilita N.H., Santosa S.J. 2017. Sintesis dan uji kemampuan senyawa co-eegdma sebagai senyawa pembawa pada transpor fenol menggunakan metode polymer inclusion membrane. Jurnal Penelitian Saintek, 22(2), 114–125. https://docplayer.info/77880842-Sintesis-dan-uji-kemam-puan-senyawa-co-eegdma-sebagai-senyawa-pem-bawa-pada-transport-fenol-menggunakan-metode-polymer-inclusion-membrane.html
  • 18. Kiswandono A.A., Mudasir, Siswanta D., Aprilita N.H., Santosa S.J., Hadi S. 2020. Synthesis of a new crosslinked poly-bisphenol a diglycidyl ether (polyBADGE) as a carrier in phenol transport. Kuwait Journal of Science, 47, 39–48. https://journalsku-wait.org/kjs/index.php/KJS/article/view/8450
  • 19. Kiswandono A.A., Mudasir, Siswanta D., Aprilita N.H., Santosa S.J., Hadi S. 2019. Synthesis and characterization of co-EDAF and its application test as a carrier membrane for phenol transport using polymer inclusion membrane (PIM). Research Journal of Chemistry and Environment, 23(5), 1–9. https://www.researchgate.net/publication/335951217_Synthesis_and_characterization_of_co-edaf_and_its_application_test_as_a_carrier_membrane_for_phenol_transport_using_polymer_inclusion_membrane_PIM
  • 20. Kiswandono A.A., Santosa S.J., Siswanta D., Aprilita N.H. 2013. Extending the life time of polymer inclusion membrane containing copoly (eugenol-dvb) as carrier for phenol transport. Indonesian Journal of Chemistry, 13(3), 254–261. https://doi:10.22146/ijc.21285
  • 21. Li Z., Meng X. 2020. New insight into reactive oxidation species (ros) for bismuth-based photocatalysis in phenol removal. Journal of Hazardous Materials. https://doi:10.1016/j.jhazmat.2020.122939
  • 22. Ling Y.Y., Mohd Suah F.B. 2017. Extraction of malachite green from wastewater by using polymer inclusion membrane. Journal of Environmental Chemical Engineering, 5(1), 785–794. https://www.sciencedirect.com/science/article/abs/pii/S2213343717300015
  • 23. Liu J., Xie J., Ren Z., Zhang W. 2013. Solvent extraction of phenol with cumene from wastewater. Desalination and Water Treatment, 51(19–21), 3826–3831. https://doi:10.1080/19443994.2013.796993
  • 24. O’Bryan Y., Truong Y.B., Cattrall R.W., Kyratzis I.L., Kolev S.D. 2017. A new generation of highly stable and permeable polymer inclusion membranes (PIMs) with their carrier immobilized in a crosslinked semi-interpenetrating polymer network. Application to the transport of thiocyanate. Journal of Membrane Science, 529, 55–62. https://www.sciencedirect.com/science/article/abs/pii/S0376738816313540
  • 25. Othman N., Heng L.C., Noah N.F.M., Yi O.Z., Jusoh N., Nasruddin N.A., Ali N., Hamzah S. 2015. Removal of phenol from wastewater by supported liquid membrane process. Jurnal Teknologi, 74(7), 117–121. https://sci-hub.hkvisa.net/10.11113/jt.v74.4709
  • 26. Pavón S., Blaesing L., Jahn A., Aubel I., Bertau M. 2020. Liquid membranes for efficient recovery of phenolic compounds such as vanillin and catechol. Membranes, 11(1), 20. https://doi.org/10.3390/membranes11010020
  • 27. Refinel, Salim E., Astuti I.T. 2019. Transport of phenol by bulk liquid membrane using FeCl3 solution as stripping phase. Jurnal Zarah, 7, 29–34. https://docplayer.info/161397214-Jurnal-zarah-vol-7-no-1–2019-halaman-transpor-fenol-dalam-teknik-membran-cair-fasa-ruah-menggunakan-larutan-fecl3-sebagai-fasa-penerima.html
  • 28. Rosly M.B., Othman N., Rahman H.A. 2018. Liquid membrane component selection for removal of phenol from simulated aqueous waste solution. Malaysian Journal of Analytical Sciences, 22, 702–714. https://www.researchgate.net/publication/327385101_Liquid_membrane_component_selection_for_removal_of_phenol_from_simulated_aqueous_waste_solution
  • 29. Saka C., Kiswandono A.A., Hadi S. 2020. Synthesis of polymer inclusion membranes based on PVC containing copoly-EDVB 4% as a carrier for removal of phenol solutions. Pollution Research Journal, 39(4), 1009–1016. http://www.envirobiotechjournals.com/article_abstract.php?aid=11072&iid=323&jid=4
  • 30. Saratale R.G., Hwang K.J., Song J.Y., Saratale G.D., Kim D.S. 2015. Electrochemical oxidation od phenol for wastewater treatment using ti/pbo2 electrode. Journal of Environmental Engineering. https://doi:10.1061/(ASCE)EE.1943–7870.0001007
  • 31. Sellami F., Kebiche-senhadji O., Marais S., Couvrat N. 2019. Polymer inclusion membranes based on CTA/PBAT blend containing aliquat 336 as extractant for removal of Cr (VI): Efficiency, stability and selectivity. Reactive and Functional Polymers, 139, 120–132. https://www.sciencedirect.com/science/article/abs/pii/S1381514819300550
  • 32. Silva F.F.M., Monte F.J.Q., Lemos T.L.G., Nascimento P.G.G., Costa A.K.M., Paiva L.M.M. 2018. Eugenol Derivatives: Synthesis, Characterization, and Evaluation of Antibacterial and Antioxidant Activities. Chemistry Central Journal, 12(34), 1–9. https://doi.org/10.1186/s13065–018–0407–4
  • 33. Suah F.B.M., Ahmad M. 2017. Preparation and characterization of polymer inclusion membrane based optode for determination of Al3+ ion. Analytica Chimica Acta, 951, 133–139. https://www.sciencedirect.com/science/article/abs/pii/S0003267016313885
  • 34. Sun H., Yao J., Li D., Li Q., Liu B., Liu S., Cong H., Van Agtmaal S., Feng C. 2017. Removal of phenols from coal gasification wastewater through polypropylene hollow fiber supported liquid membrane. Chemical Engineering Research and Design, 123, 277–283. https://www.sciencedirect.com/science/article/abs/pii/S0263876217302885
  • 35. Turgut H.I., Eyupoglu V., Kumbasar R.A., Sisman I. 2017. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co HFP as polymer matrix. Sep Purif Technol, 175, 406–417. https://www.researchgate.net/publication/310896825_Alkyl_chain_length_dependent_CrVI_transport_by_polymer_inclusion_membrane_using_room_temperature_ionic_liquids_as_carrier_and_PVDF-co-HFP_as_polymer_matrix
  • 36. Villegas L.G.C., Mashhadi N., Chen M., Mukherjee D., Keith E., Taylor K.E,. Nihar B.N. 2016. A short review of techniques for phenol removal from wastewater. Current Pollution Report, 2, 157–167. https://link.springer.com/article/10.1007/s40726–016–0035–3
  • 37. Wang D., Hu J., Liu D., Chen Q., Li J. 2017. Selective transport and simultaneous separation of Cu(II), Zn(II) and Mg(II) using a dual polymer inclusion membrane system. Journal of Membrane Science, 524, 205–213. https://www.sciencedire ct.com/science/article/abs/pii/S0376738816311346
  • 38. Yang X., Duan H., Shi D., Yang R., Wang S., Guo H. 2015. Facilitated transport of phenol through supported liquid membrane containing bis(2-ethylhexyl) sulfoxide (beso) as the carrier. Chemical Engineering and Processing Process Intensification, 93, 79–86. https://www.sciencedirect.com/science/article/abs/pii/S0255270115300155
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f4119d5-18ae-4935-a4ed-9d11687e2471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.