PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated FG carbon nanotubes filled composites, which are promising metamaterials that can be useful in the energy absorption field. This structure can absorb energy through elastic deformation. For this issue, absorbed energy and dynamic stability analysis of the FG-CNTRC curved panel surrounded by a non-polynomial viscoelastic substrate using three-dimensional poroelasticity theory is investigated. For stability of the structure after vibrating, the viscoelastic substrate as the non-polynomial viscoelastic model is presented. The curved panel comprises multilayer carbon nanotubes (CNT) which are uniformly distributed in all layers of facing sheets; however, the system’s weight fraction alters for each layer through the thickness orientation. The influences of several parameters, such as Winkler–Pasternak parameters, span angle CNTs’ volume fraction, length to radius ratio, compressibility coefficient, friction coefficient, torsional parameter, initial axial stress, and damping factor on the dynamic responses of the FG-CNTRC curved panel surrounded by a non-polynomial viscoelastic substrate are investigated. The golden result of this paper is that the effect of radial stress on the energy absorption is hardly dependent on the value of the foundation parameters. As an applicable outcome in pertained applications, by increasing the compressibility, and friction coefficients, the composite shell's energy absorption decreases.
Rocznik
Strony
71--99
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
  • Scientific Research Department, Zhejiang Institute of Communications, Hangzhou 311112, Zhejiang, China
autor
  • College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
autor
  • Department of Civil Engineering, Tsinghua University, Haidian 100083, Beijing, China
  • National Railway Group Wu Guang High Railway Company, Wuhan 430212, Hubei, China
  • Center of Excellence in Design, Robotics, and Automation, Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9567, Tehran, Iran
Bibliografia
  • [1] Moradi Z, Davoudi M, Ebrahimi F, Ehyaei AF. Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller. Waves in Random and Complex Media. 2021;21–24. https://doi.org/10.1080/17455030.2021.1926572.
  • [2] Jeng-Shian C, Wen-Jiann C. Natural frequencies and critical velocities of fixed-fixed laminated circular cylindrical shells conveying fluids. Comput Struct. 1995;57:929–39.
  • [3] Sepehr M, Hashemi SS, Rahjoo M, Farhangmehr V, Alimoradi A. Prediction of heat transfer, pressure drop and entropy generation in shell and helically coiled finned tube heat exchangers. Chem Eng Res Des. 2018;134:277–91.
  • [4] Rahimi A, Alibeigloo A, Safarpour M. Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell. Journal of Vibration and Control. 1077546320902340, 2020.
  • [5] Asadi H. Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments. Acta Astronaut. 2017;138:214–24.
  • [6] Rewar S, Bansal B, Singh C, Sharma A, Pareek R. Pulsatile drug delivery system: an overview. J Glob Trends Pharm Sci. 2014;5:1943–55.
  • [7] Hidiroglu M, Aksut D, Serc ̧e O, Karabulut H, S ̧ en M. Reducing the hydrocarbon gas diffusion and increasing the pressure-impact strength of fuel transfer pipelines for use in the automotive industry using radiation crosslinked polyamide 12. Radiat Phys Chem. 2019;159:118–23.
  • [8] Reddy J, Liu C. A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci. 1985;23:319–30.
  • [9] Ren J. Analysis of simply-supported laminated circular cylindrical shell roofs. Compos Struct. 1989;11:277–92.
  • [10] Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H. Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math Appl. 2019;77:2608–26.
  • [11] Fazelzadeh SA, Rahmani S, Ghavanloo E, Marzocca P. Thermoelastic vibration of doubly-curved nano-composite shells reinforced by graphene nanoplatelets. J Therm Stresses. 2019;42:1–17.
  • [12] Shen H-S, Xiang Y, Fan Y. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments. Compos Struct. 2017;182:447–56.
  • [13] Chakraborty S, Dey T, Kumar R. Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos B Eng. 2019;168:1–14.
  • [14] Ansari R, Gholami R. Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. Int J Appl Mech. 2016;8:1650053.
  • [15] Ansari R, Torabi J, Faghih Shojaei M. Free vibration analysis of embedded functionally graded carbon nanotube-reinforcedcomposite conical/cylindrical shells and annular plates using a numerical approach. J Vib Control. 2018;24:1123–44.
  • [16] Qin Z, Pang X, Safaei B, Chu F. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos Struct. 2019;220:847–60.
  • [17] Song Z, Zhang L, Liew K. Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches.Compos Struct. 2016;158:92–100.
  • [18] Mehar K, Kumar Panda S. Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method. Polym Compos. 2018;39:2751–64.
  • [19] Mehar K, Panda SK, Devarajan Y, Choubey G. Numerical buckling analysis of graded CNT-reinforced composite sandwichshell structure under thermal loading. Compos Struct. 2019;216:406–14.
  • [20] Natarajan S, Haboussi M, Manickam G. Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets. Compos Struct. 2014;113:197–207.
  • [21] Alibeigloo A, Jafarian H. Three-dimensional static and free vibration analysis of carbon nano tube reinforced composite cylindrical shell using differential quadrature method. Int J Appl Mech. 2016;8:1650033.
  • [22] Wu H, Kitipornchai S, Yang J. Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Appl Math Model. 2017;42:735–52.
  • [23] Du J, Jin X, Wang J, Zhou Y. SH wave propagation in a cylindrically layered piezoelectric structure with initial stress. Acta Mech. 2007;191:59–74.
  • [24] Rad AB. Static analysis of non-uniform 2D functionally graded auxetic-porous circular plates interacting with the gradient elastic foundations involving friction force. Aerosp Sci Technol. 2018;76:315–39.
  • [25] Hou F, Wu S, Moradi Z, et al. The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation. Engineering with Computers. 2021. https://doi.org/10.1007/s00366-021-01456-x.
  • [26] Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, et al. Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct. 2020;154:106840.
  • [27] Chen H, Song H, Li Y, Safarpour M. Hygro-thermal buckling analysis of polymer–CNT–fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM. Eng Comput. 2020. https://doi.org/10.1007/s00366-020-01102-y.
  • [28] Safarpour M, Rahimi A, Alibeigloo A. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mech Based Design Struct Mach. 2019. https://doi.org/10.1080/15397734.2019.1646137.
  • [29] Al-Furjan M, Bolandi SY, Habibi M, Ebrahimi F, Chen G, Safarpour H. Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow. Eng Comput. 2021. https://doi.org/10.1007/s00366-020-01255-w.
  • [30] Al-Furjan M, Dehini R, Paknahad M, Habibi M, Safarpour H. On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment. Arch Civil Mech Eng. 2021;21:1–25.
  • [31] Liu H, Shen S, Oslub K, Habibi M, Safarpour H. Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity. Eng Comput. 2021. https://doi.org/10.1007/s00366-021-01316-8.
  • [32] Wang H, Zhang H, Dousti R, Safarpour H. Dynamic simulation of moderately thick annular system coupled with shape memory alloy and multi-phase nanocomposite face sheets. Eng Comput. 2021. https://doi.org/10.1007/s00366-020-01246-x.
  • [33] Zare R, Najaafi N, Habibi M, Ebrahimi F, Safarpour H. Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller. Smart Struct Syst. 2020;26:469–80.
  • [34] Al-Furjan M, Habibi M, Ebrahimi F, Chen G, Safarpour M, Safarpour H. A coupled thermomechanics approach for frequency information of electrically composite microshell using heat transfer continuum problem. Eur Phys J Plus. 2020;135:1–45.
  • [35] Al-Furjan M, Habibi M, Ebrahimi F, Mohammadi K, Safarpour H. Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories. Waves Random Complex Media. 2020. https://doi.org/10.1080/17455030.2020.1831099.
  • [36] Liu Y, Wang W, He T, et al. On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system. Eng Comput. 2021. https://doi.org/10.1007/s00366-021-01454-z.
  • [37] Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW. Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites. Eng Comput. 2020. https://doi.org/10.1007/s00366-020-01167-9.
  • [38] SafarPour H, Ghadiri M. Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microfluid Nanofluid. 2017;21:22.
  • [39] Alibeigloo A, Zanoosi AP. Thermo-electro-elasticity solution of functionally graded carbon nanotube reinforced composite cylindrical shell embedded in piezoelectric layers. Compos Struct. 2017;173:268–80.
  • [40] Yasmin A, Daniel IM. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer. 2004;45:8211–9.
  • [41] Shen H-S. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: axially-loaded shells. Compos Struct. 2011;93:2096–108.
  • [42] Jabbari M, Karampour S, Eslami M. Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere. Meccanica. 2013;48:699–719.
  • [43] Zhang B, He Y, Liu D, Shen L, Lei J. Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory. Compos Struct. 2015;119:578–97.
  • [44] Alibeigloo A, Shaban M. Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity. Acta Mech. 2013;224:1415–27.
  • [45] Rashvand K, Alibeigloo A, Safarpour M. Free vibration and instability analysis of a viscoelastic micro-shell conveying viscous fluid based on modified couple stress theory in thermal environment. Mech Based Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1745079.
  • [46] Ansari R, Hasrati E, Torabi J. Vibration analysis of pressurized sandwich FG-CNTRC cylindrical shells based on the higher-order shear deformation theory. Mater Res Express. 2019;6:045049.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f39131e-5daa-495d-97e3-646ef2e626cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.