PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymptotic model for the propagation of surface waves on a rotating magnetoelastic half-space

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is focused on deriving the approximate model for surface wave propagation on an elastic isotropic half-plane under the effects of the rotation and magnetic field along with the prescribed vertical and tangential face loads. The method of study depends on the slow time perturbation of the prevalent demonstration for the Rayleigh wave eigen solutions through harmonic functions. A perturbed pseudo-hyperbolic equation on the interface of the media is subsequently derived, governing the propagation of the surface wave. The established asymptotic formulation is tested by comparison with the exact secular equation. In the absence of the magnetic field, the specific value of Poisson’s ratio, 𝜈 =0.25, is highlighted, where the rotational effect vanishes at the leading order.
Wydawca
Rocznik
Strony
art. no. 20240057
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
Bibliografia
  • [1] Z. Liu and H. Qi, Dynamic anti-plane behavior of rare earth giant magnetostrictive medium with a circular cavity defect in semi-space, Sci. Rep. 11 (2021), 13442.
  • [2] J. S. Lee and E. N. Its, Propagation of Rayleigh waves in magneto-elastic media, J Appl Mech. 59 (1992), no. 4, 812–818.
  • [3] M. Xu, K. Yamamoto, J. Puebla, K. Baumgaertl, B. Rana, K. Miura, et al., Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling, Sci. Adv. 6 (2020), no. 32, eabb1724, DOI: https://doi.org/10.1126/sciadv.abb1724.
  • [4] K. Li, S. Jing, J. Yu, and B. Zhang, Complex Rayleigh waves in nonhomogeneous magneto-electro-elastic half-spaces, Materials 14 (2021), 1011, DOI: https://doi.org/10.3390/ma14041011.
  • [5] H. Y. Kuo and K. C. Hsin, Functionally graded piezoelectric-piezomagnetic fibrous composites, Acta Mech. 229 (2018), 1503–1516.
  • [6] J. Qiu, J. Tani, T. Ueno, T. Morita, H. Takahashi, and H. Du, Fabrication and high durability of functionally graded piezoelectric bending actuators, Smart Mater. Struct. 12 (2003), 115–121.
  • [7] R. Tian, J. Liu, and X. Liu, Magnetoelectric properties of piezoelectric-piezomagnetic composites with elliptical nanofibers, Acta Mech. Solida Sin. 33 (2020), 368–380.
  • [8] L. Rayleigh, On waves propagated along the plane surface of an elastic solid, Proc. Lond. Math. Soc. 1 (1885), no. 1, 4–11.
  • [9] A. Palermo, S. Krodel, A. Marzani, and C. Daraio, Engineered metabarrier as shield from seismic surface waves, Sci. Rep. 6 (2016), no. 1, 1–10.
  • [10] Y. S. Cho, Non-destructive testing of high strength concrete using spectral analysis of surface waves, NDT & E Int. 36 (2003), no. 4, 229–35.
  • [11] V. V. Krylov, Noise and vibration from high-speed trains, Thomas Telford, London, 2001.
  • [12] L. Knopoff, The interaction between elastic wave motions and magnetic field in electrical conductors, J. Geophys. Res. 60 (1955), no. 4, 441–456.
  • [13] P. Chadwick, Elastic wave propagation in a magnetic field, Aces IX Congr. Int. Mech. Appl. 7 (1957), 143–158.
  • [14] S. Kaliski and J. Petykiewicz, Equation of motion coupled with the field of temperature in a magnetic field involving mechanical and electrical relaxation for anisotropic bodies. Proc. Vib. Probl. 2 (1959), no. 17.
  • [15] I. Abubakar, Magneto-elastic SH-type of motion, Pure Appl. Geophys. 59 (1964), 10–20.
  • [16] P. C. Vinh and G. Seriani, Explicit secular equations of Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity, Wave Motion 46 (2009), no. 7, 427–434.
  • [17] T. C. T. Ting, Surface waves in an exponentially graded, general anisotropic elastic material under the influence of gravity, Wave Motion 48 (2011), no. 4, 335–344.
  • [18] A. M. Mubaraki and F. M. Almalki, Surface waves on a coated homogeneous half-space under the effects of external forces, Symmetry 14 (2022), no. 11, 2241.
  • [19] D. M. Barnett and J. Lothe, Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals, J. Phys. F: Metal Phys. 4 (1974), no. 5, 671.
  • [20] Y. B. Fu and A. Mielke, A new identity for the surface-impedance matrix and its application to the determination of surface-wave speeds. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 458 (2002), no. 2026, 2523–2543.
  • [21] S. Nath and P. R. Sengupta, Influence of gravity on propagation of waves in a medium in presence of a compressional source. Sadhana 24 (1999), no. 6, 495–505.
  • [22] P. T. Wootton, J. Kaplunov, and D. Prikazchikov, A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane, IMA J. Appl. Math. 85 (2020), no. 1, 113–131.
  • [23] J. Kaplunov, D. A. Prikazchikov, B. Erbaš, and O. Šahin, On a 3D moving load problem for an elastic half space, Wave Motion 50 (2013), no. 8, 1229–1238.
  • [24] R. I. Nuruddeen, R. Nawaz, and Z. Q. M. Zia, Asymptotic analysis of an anti-plane shear dispersion of an elastic five-layered structure amidst contrasting properties. Arch. Appl. Mech. 90 (2020), 1875–1892.
  • [25] R. INuruddeen, R. Nawaz, and Z. Q. M. Zia, Effects of thermal stress, magnetic field and rotation on the dispersion of elastic waves in an inhomogeneous five-layered plate with alternating components. Sci. Prog. 103 (2020), 0036850420940469.
  • [26] M. Asif, R. I. Nuruddeen, and R. Nawaz, Propagation of elastic waves in a magneto-elastic layer laying over a light Winkler foundation with rotation, Waves Random Complex Media, 2023. DOI: https://doi.org/10.1080/17455030.2023.2171502.
  • [27] J. Kaplunov and D. A. Prikazchikov, Asymptotic theory for Rayleigh and Rayleigh-type waves, Adv. Appl. Mech. 50 (2017), 1–106.
  • [28] J. Kaplunov, A. Zakharov, and D. Prikazchikov, Explicit models for elastic and piezoelastic surface waves. IMA J. Appl. Math. 71 (2016), no. 5, 768–782.
  • [29] H. H. Dai, J. Kaplunov, and D. A. Prikazchikov, A long-wave model for the surface elastic wave in a coated half-space, Proc. R. Soc. A: Math. Phys. Eng. Sci. 466 (2010), no. 2122, 3097–3116.
  • [30] N. Ege, B. Erbasss, and D. A. Prikazchikov, On the 3D Rayleigh wave field on an elastic half-space subject to tangential surface loads, ZAMM - J. Appl. Math. Mech. 95 (2015), no. 12, 1558–1565.
  • [31] S. M. Abo-Dahab, A. M. Abd-Alla, and A. Khan, Rotational effect on Rayleigh, Love and Stoneley waves in non-homogeneous fibre-reinforced anisotropic general viscoelastic media of higher order, Struct. Eng. Mech. 58 (2016), 181–197.
  • [32] M. Destrade, Seismic Rayleigh waves on an exponentially graded, orthotropic half-space, Proc. R. Soc. A: Math. Phys. Eng. Sci. 463 (2007), no. 2078, 495–502.
  • [33] P. Chadwick, Surface and interfacial waves of arbitrary form in isotropic elastic media, J. Elast. 6 (1976), no. 1, 73–80.
  • [34] F. G. Friedlander, On the total reflection of plane waves, Quart. J. Mech. Appl. Math. 1 (1948), no. 1, 376–384.
  • [35] S. L. Sobolev, P. Frank, and R. von Mises, Some problems in wave propagation, Diff. Integ. Equ. Math. Phys. (1937), 468–617.
  • [36] A. P. Kiselev and D. F. Parker, Omni-directional Rayleigh, Stoneley and Schölte waves with general time dependence, Proc. R. Soc. A: Math. Phys. Eng. Sci. 466 (2010), 2241–2258.
  • [37] A. Mubaraki, S. Althobaiti, and R. I. Nuruddeen, Propagation of surface waves in a rotating coated viscoelastic half-space under the influence of magnetic field and gravitational forces, Fractal Fract. 5 (2021), 1–16.
  • [38] M. Schoenberg and D. Censor, Elastic waves in rotating media, Quarter. Appl. Math. 31 (1973), 115–125.
  • [39] A. M. SMahdy, K. Lotfy, A. A. EL-Bary, and H. H. Sarhan, Effect of rotation and magnetic field on a numerical-refined heat conduction in a semiconductor medium during photo-excitation processes, Eur. Phys. J. Plus, 136 (2021), 553.
  • [40] A. M. S. Mahdy, K. Lotfy, A. A. EL-Bary, and I. M. Tayel, Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses, Eur. Phys. J. Plus 136 (2021), 651.
  • [41] M. Yasein, N. Mabrouk, K. Lotfy, and A. A. EL-Bary, The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type, Results Phys. 25 (2019), no. 12, 4731–4740.
  • [42] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55, US Government Printing Office, 1968.
  • [43] Y. Fu, J. Kaplunov, and D. Prikazchikov, Reduced model for the surface dynamics of a generally anisotropic elastic half-space, Proc. R. Soc. A 476 (2020), no. 2234, p. 20190590.
  • [44] S. Shagolshem, B. Bira, and D. Zeidan, Study of wave propagation in arterial blood flow under symmetry analysis, Math. Methods Appl. Sci. 46 (2023), no. 4, 3522–3533.
  • [45] T.-T. Zhang, On Lie symmetry analysis, conservation laws and solitary waves to a longitudinal wave motion equation, Appl. Math. Lett. 98 (2019), 199–205.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f3746b7-0888-4e0a-8375-5bb58d9649a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.