PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Utilization of cylindrical Cu/Fe galvanic cell as an effective method for the removal of humic acids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
Humic substances (HS) are hydrophobic parts of dissolved organic matter, which are hard to degrade using biological processes. When exposed to disinfection processes, the HS present in wastewater could lead to the formation of disinfection by-products (DBPs), which are harmful and dangerous to health. Thus, a chemical coagulation process is commonly used for HS removal. This work used a cylindrical galvanic cell (CGC) with an iron anode and a copper cathode, where the dissolution of the anode served as an alternative source of metal ions for HS coagulation. The galvanic cell current for CGC stabilized at around 0.6 mA, and the voltage fluctuated, ca. 0.5 V for all solutions. The peaks observed on cyclic voltammograms could be associated only with oxidation and dissolution of iron; no other process was identified. After the process, the structures and molecular composition of the anode surface suggest the loss of Fe mass and the formation of iron oxides due to corrosion. The initial pH of the tested solution influenced the total Fe oncentration in the solution as well as colour and turbidity. The quantitative removal of HS by electrolysis and membrane filtration processes at initial pHi = 6:0 yielded 72% and 90%, respectively, after 6 and 10 min. The mechanism of sorption on the flocs of hydroxides as a primary factor in HA removal was suggested.
Rocznik
Strony
art. no. e17
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Chemistry, Łódzki Square 4, 10-727 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Chemistry, Łódzki Square 4, 10-727 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Chemistry, Łódzki Square 4, 10-727 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Chemistry, Łódzki Square 4, 10-727 Olsztyn, Poland
Bibliografia
  • 1. Alcalá-Delgado A.G., Lugo-Lugo V., Linares-Hernández I., Martínez-Miranda V., Fuentes-Rivas R.M., Ureña-Nuñez F., 2018. Industrial wastewater treated by galvanic, galvanic Fenton, and hydrogen peroxide systems. J. Water Process Eng., 22, 1–12. DOI: 10.1016/j.jwpe.2018.01.001.
  • 2. Alresheedi M.T., Barbeau B., Basu O.D., 2019. Comparisons of NOM fouling and cleaning of ceramic and polymeric membranes during water treatment. Sep. Purif. Technol., 209, 452–460. DOI: 10.1016/j.seppur.2018.07.070.
  • 3. Asakawa D., Iimura Y., Kiyota T., Yanagi Y., Fujitake N., 2011. Molecular size fractionation of soil humic acids using preparative high performance size-exclusion chromatography.
  • 4. J. Chromatogr. A, 1218, 6448–6453. DOI: 10.1016/j.chroma.2011.07.030.
  • 5. Bazrafshan E., Biglari H., Mahvi A.H., 2012. Humic acid removal from aqueous environments by electrocoagulation process using iron electrodes. J. Chem., 9, 2453–2461. DOI: 10.1155/2012/876739.
  • 6. Benegas J.C., Porasso R.D., van den Hoop M.A.G.T., 2003. Proton–metal exchange processes in synthetic and natural polyelectrolyte solution systems. Colloids Surf., A, 224, 107–117. DOI: 10.1016/S0927-7757(03)00327-3.
  • 7. Broo A.E., Berghult B., Hedberg T., 1999. Drinking water distribution – the effect of natural organic matter (NOM) on the corrosion of iron and copper. Water Sci. Technol., 40, 17–24. DOI: 10.2166/wst.1999.0432.
  • 8. Cabrera-Sierra R., Sosa E., Oropeza M.T., González I., 2002. Electrochemical study on carbon steel corrosion process in alkaline sour media. Electrochim. Acta, 47, 2149–2158. DOI: 10.1016/S0013-4686(02)00090-7.
  • 9. Castillo-Suárez L.A., Lugo-Lugo V., Linares-Hernández I., Martínez-Miranda V., Esparza-Soto M., Mier-Quiroga M.Á., 2019. Biodegradability index enhancement of landfill leachates using a Solar Galvanic-Fenton and Galvanic-Fenton system coupled to an anaerobic–aerobic bioreactor. Sol. Energy, 188, 989–1001. DOI: 0.1016/j.solener.2019.07.010.
  • 10. Chanudet V., Filella M., Quentel F., 2006. Application of a simple voltammetric method to the determination of refractory organic substances in freshwaters. Anal. Chim. Acta, 569, 244–249. DOI: 10.1016/j.aca.2006.03.097.
  • 11. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. OJ, L 330, 32–54, 05.12.1998. Available at: https://eur-lex.europa.eu/eli/dir/1998/83/oj.
  • 12. Duan J., Gregory J., 2003. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci., 100–102, 475–502. DOI: 10.1016/S0001-8686(02)00067-2.
  • 13. Dubrawski K.L., Fauvel M., Mohseni M., 2013. Metal type and natural organic matter source for direct filtration electrocoagulation of drinking water. J. Hazard. Mater., 244–245, 135–141. DOI: 10.1016/j.jhazmat.2012.11.027.
  • 14. El-Naggar M.M., 2004. Cyclic voltammetric studies of carbon steel in deaerated NaHCO3 solution. J. Appl. Electrochem., 34, 911–918. DOI: 10.1023/B:JACH.0000040448.93720.2d.
  • 15. Ghernaout D., Ghernaout B., 2012. Sweep flocculation as a second form of charge neutralisation—a review. Desalination Water Treat., 44, 15–28. DOI: 10.1080/19443994.2012.691699.
  • 16. Golea D.M., Upton A., Jarvis P., Moore G., Sutherland S., Parsons S.A., Judd S.J., 2017. THM and HAA formation from NOM in raw and treated surface waters. Water Res., 112, 226–235. DOI: 10.1016/j.watres.2017.01.051.
  • 17. Heiderscheidt E., Saukkoriipi J., Ronkanen A.-K., Kløve B., 2013. Optimisation of chemical purification conditions for direct application of solid metal salt coagulants: Treatment of peatland-derived diffuse runoff. J. Environ. Sci., 25, 659–669. DOI: 10.1016/S1001-0742(12)60111-9.
  • 18. Hesse S., Kleiser G., Frimmel F.H., 1999. Characterization of refractory organic substances (ROS) in water treatment. Water Sci. Technol., 40, 1–7. DOI: 10.2166/wst.1999.0429.
  • 19. Huet B., L’hostis V., Santarini G., Feron D., Idrissi H., 2007. Steel corrosion in concrete: Determinist modeling of cathodic reaction as a function of water saturation degree. Corros. Sci., 49, 1918–1932. DOI: 10.1016/j.corsci.2006.10.005.
  • 20. Iffat A.T., Maqsood Z.T., Fatima N., 2005. Study of complex formation of Fe(III) with tannic acid. J. Chem. Soc. Pak., 27, 174–177.
  • 21. Imai A., Fukushima T., Matsushige K., Kim Y.-H., Choi K., 2002. Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res., 36, 859–870. DOI: 10.1016/S0043-1354(01)00283-4.
  • 22. Ji Y., Zhao W., Zhou M., Ma H., Zeng P., 2013. Corrosion current distribution of macrocell and microcell of steel bar in concrete exposed to chloride environments. Constr. Build. Mater., 47, 104–110. DOI: 10.1016/j.conbuildmat.2013.05.003.
  • 23. Jiang J.-Q., 2015. The role of coagulation in water treatment. Curr. Opin. Chem. Eng., 8, 36–44. DOI: 10.1016/j.coche.2015. 01.008.
  • 24. Jiménez C., Sáez C., Martínez F., Cañizares P., Rodrigo M.A., 2012. Electrochemical dosing of iron and aluminum in continuous processes: A key step to explain electro-coagulation processes. Sep. Purif. Technol., 98, 102–108. DOI: 10.1016/j.seppur.2012.07.005.
  • 25. Kislenko V.N., Oliynyk L.P., 2004. Treatment of humic acids with ferric, aluminum, and chromium ions in water. J. Colloid Interface Sci., 269, 388–393. DOI: 10.1016/j.jcis.2003.07.040.
  • 26. Klučáková M., 2018. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front. Chem., 6, 235. DOI: 10.3389/fchem.2018.00235.
  • 27. Krupińska I., 2023. Suitability of highly polymerised polyaluminium chlorides (PACls) in the treatment of mixture of groundwater and surface water. Molecules, 28, 468. DOI: 10.3390/molecules28020468.
  • 28. Kuczyński M., Łuba M., Mikołajczyk T., Pierożyński B., Jasiecka-Mikołajczyk A., Smoczyński L., Sołowiej P., Wojtacha P., 2021. Electrodegradation of acid mixture dye through the employment of Cu/Fe macro-corrosion galvanic cell in Na2SO4 synthetic wastewater. Molecules, 26, 4580. DOI: 10.3390/molecules26154580.
  • 29. Kuokkanen V., Kuokkanen T., Rämö J., Lassi U., 2015. Electrocoagulation treatment of peat bog drainage water containing humic substances. Water Res., 79, 79–87. DOI: 10.1016/j.watres.2015.04.029.
  • 30. Libecki B., Kalinowski S., Wardzyńska R., Bęś A., 2020. Using an angular detection photometer (ADP) in analyzing the humic acids coagulation process. J. Water Process Eng., 37, 101507. DOI: 10.1016/j.jwpe.2020.101507.
  • 31. Libecki B., Pierożyński B., 2019. Auto electro coagulating device. PL231445B1.
  • 32. Łomińska-Płatek D., Anielak A.M., 2019. Characteristic of fulvic acids extracted from the wastewater by different methods. Annual Set The Environment Protection, 21(1), 184–200.
  • 33. Luo H., Su H., Dong C., Li X., 2017. Passivation and electro-chemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Appl. Surf. Sci., 400, 38–48. DOI: 10.1016/j.apsusc.2016.12.180.
  • 34. Martínez-Huitle C.A., Sirés I., Rodrigo M.A., 2021. Editorial overview: Electrochemical technologies for wastewater treatment with a bright future in the forthcoming years to benefit of our society. Curr. Opin. Electrochem., 30, 100905. DOI: 10.1016/j.coelec.2021.100905.
  • 35. Oriekhova O., Stoll S., 2014. Investigation of FeCl3 induced coagulation processes using electrophoretic measurement, nanoparticle tracking analysis and dynamic light scattering: Importance of pH and colloid surface charge. Colloids Surf., A, 461, 212–219. DOI: 10.1016/j.colsurfa.2014.07.049.
  • 36. Pastorelli C., Formaro L., Ricca G., Severini F., 1999. Electro- chemical behavior of the humic acid from leonardite. Colloids Surf., B, 13, 127–134. DOI: 10.1016/S0927-7765(99)00003-X.
  • 37. Pierozynski B., Piotrowska G., 2018. Electrochemical degradation of phenol and resorcinol molecules through the dissolution of sacrificial anodes of macro-corrosion galvanic cells. Water, 10, 770. DOI: 10.3390/w10060770.
  • 38. Ratnaweera H., Fettig J., 2015. State of the art of online monitoring and control of the coagulation process. Water, 7, 6574–6597. DOI: 10.3390/w7116574.
  • 39. Sean Brossia C., 2014. 11 – The use of probes for detecting corrosion in underground pipelines, In: Orazem M.E. (Ed.), Un- derground pipeline corrosion. Woodhead Publishing, 286–303. DOI: 10.1533/9780857099266.2.286.
  • 40. Sillanpää M., Matilainen A., 2015. Chapter 3 – NOM removal by coagulation, In: Sillanpää M. (Ed.), Natural organic matter in water. Butterworth-Heinemann, 55–80. DOI: 10.1016/B978-0-12-801503-2.00003-3.
  • 41. Smallman R.E., Bishop R.J., 1999. Chapter 12 – Corrosion and surface engineering, In: Smallman R.E., Bishop R.J. (Eds.), Modern physical metallurgy and materials engineering (sixth edition). Butterworth-Heinemann, Oxford, 376–393. DOI: 10.1016/B978-075064564-5/50012-4.
  • 42. Tatzber M., Stemmer M., Spiegel H., Katzlberger C., Haberhauer G., Mentler A., Gerzabek M.H., 2007. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci., 170, 522–529. DOI: 10.1002/jpln.200622082.
  • 43. Ulu F., BarışçıS., Kobya M., Särkkä H., Sillanpää M., 2014. Removal of humic substances by electrocoagulation (EC) process and characterization of floc size growth mechanism under optimum conditions. Sep. Purif. Technol., 133, 246–253. DOI: 10.1016/j.seppur.2014.07.003.
  • 44. Wang D.S., Zhao Y.M., Yan M.Q., Chow C.W.K., 2013. Removal of DBP precursors in micro-polluted source waters: A comparative study on the enhanced coagulation behavior. Sep. Purif. Technol., 118, 271–278. DOI: 10.1016/j.seppur.2013.06.038.
  • 45. Xiao K., Dong C., Li X., Wang F., 2008. Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel. J. Iron Steel Res. Int., 15, 42–48. DOI: 10.1016/S1006-706X(08)60247-2.
  • 46. Xiao K., Li Z., Song, J., Bai Z., Xue W., Wu J., Dong C., 2021. Effect of concentrations of Fe2+ and Fe3+ on the corrosion behavior of carbon steel in Cl− and SO2−4 aqueous environments. Met. Mater. Int., 27, 2623–2633. DOI: 10.1007/s12540-019-00590-y.
  • 47. Xiao Y.-H., Sara-Aho T., Hartikainen H., Vähätalo A.V., 2013. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter. Limnol. Oceanogr., 58, 653–662. DOI: 10.4319/lo.2013.58.2.0653.
  • 48. Yousefi M., Nabizadeh R., Alimohammadi M., Mohammadi A.A., Mahvi A.H., 2019. Performance of granular ferric hydroxide process for removal of humic acid substances from aqueous solution based on experimental design and response surface methodology. MethodsX, 6, 35–42. DOI: 10.1016/j.mex.2018.12.010.
  • 49. Zhu X., Chen X., Yang Z., Liu Y., Zhou Z., Ren Z., 2018. Investigating the influences of electrode material property on degradation behavio of organic wastewaters by iron-carbon micro-electrolysis. Chem. Eng. J., 338, 46–54. DOI: 10.1016/j.cej.2017.12.091
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f349499-a8c8-44b6-a34e-0df2104ec201
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.