PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vulnerability assessment of southern coastal areas of Iran to sea level rise : evaluation of climate change impact

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent investigations have demonstrated global sea level rise as being due to climate change impact. Probable changes in sea level rise need to be evaluated so that appropriate adaptive strategies can be implemented. This study evaluates the impact of climate change on sea level rise along the Iranian south coast. Climatic data simulated by a GCM (General Circulation Model) named CGCM3 under two-climate change scenarios A1b and A2 are used to investigate the impact of climate change. Among the different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves are selected for predicting sea level rise by using stepwise regression. Two Discrete Wavelet artificial Neural Network (DWNN) models and a Discrete Wavelet Adaptive Neuro-Fuzzy Inference system (DWANFIS) are developed to explore the relationship between selected climatic variables and sea level changes. In these models, wavelets are used to disaggregate the time series of input and output data into different components. ANFIS/ANN are then used to relate the disaggregated components of predictors and predictand (sea level) to each other. The results show a significant rise in sea level in the study region under climate change impact, which should be incorporated into coastal area management.
Czasopismo
Rocznik
Strony
611--637
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Adamowski J., 2008a, Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis, J. Hydrol., 353 (3-4), 247-266, http://dx.doi.org/10.1016/j.jhydrol.2008.02.013.
  • 2. Adamowski J., 2008b, River flow forecasting using wavelet and cross-wavelet transform models, Hydrol. Proc., 22 (25), 4877-4891, http://dx.doi.org/10.1002/hyp.7107.
  • 3. Anctil F., Tape G.D., 2004, An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition, J. Environ. Eng. Sci., 3 (S), 121-128, http://dx.doi.org/10.1139/s03-071.
  • 4. Barford L.A., Fazzio R. S., Smith D.R., 1992, An introduction to wavelets, Hewlett- Packard Lab., HPL-92-124, 27 pp.
  • 5. Bindoff N. L., Willebrand J., Artale, V., Cazenave A., Gregory J., Gulev S., Hanawa K., Le Quere C., Levitus S., Nojiri Y., Shum C.K., Talley L.D., Unnikrishnan A. S., 2007, Observations: oceanic climate change and sea level, [in:] Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M. & Miller H. L. (eds.), Cambridge Univ. Press, Cambridge, New York, 387-429.
  • 6. Burn D.H., Cunderlik J. M., 2004, Hydrological trends and variability in the Laird River basin, Hydrol. Sci. J., 49 (1), 53-67, http://dx.doi.org/10.1623/hysj.49.1.53.53994.
  • 7. Cannas B., Fanni A., See L., Sias G., 2006, Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning, Phys. Chem. Earth, 31 (18), 1164-1171, http://dx.doi.org/10.1016/j.pce.2006.03.020.
  • 8. Chiu S. L., 1994, Fuzzy model identification based on cluster estimation, J. Int. Fuzzy Syst., 2, 267-278.
  • 9. Coulibaly P., Burn D.H., 2005, Spatial and temporal variability of Canadian seasonal streamflows, J. Climate, 18 (1), 191-210, http://dx.doi.org/10.1175/JCLI-3258.1.
  • 10. Drago A. F., Boxall S.R., 2002, Use of the wavelet transform on hydrometeorological data, Phys. Chem. Earth, 27 (32-34), 1387-1399, http://dx.doi.org/10.1016/S1474-7065(02)00076-1.
  • 11. Gilbert R.O., 1987, Statistical methods for environmental pollution monitoring, Van Nostrand Reinhold, New York, 320 pp.
  • 12. Haykin S., 1998, Neural networks - a comprehensive foundation, 2nd edn., Prentice- Hall, Upper Saddle River, NJ, 26-32.
  • 13. Houghton J.T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Xiaosu D., (eds.), 2001, Climate change 2001: The scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York, 639-693.
  • 14. Intergovernmental Panel on Climate Change (IPCC), 2007, Climate change 2007: impact, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC, Cambridge Univ. Press, Cambridge, 976 pp.
  • 15. Jang J. S.R., 1993, ANFIS: adaptive network-based fuzzy inference system, IEEE T. Syst. Man Cyb., 23 (3), 665-685, http://dx.doi.org/10.1109/21.256541.
  • 16. Kendall M.G., 1975, Rank correlation methods, Charles Griffin, London, 202 pp. Kim T.W., ValdÉs J. B., 2003, Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J. Hydrol. Engin., 8 (6), 319-328, http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319).
  • 17. Kleinow T., 2002, Testing continuous time models in financial markets, Ph.D. thesis, Buchhändler-Vereinigung, Berlin, 244 pp.
  • 18. Küçük M., 2004, Modeling river flow series using wavelet transform, Ph.D. thesis, Istanbul Tech. Univ., Istanbul, (in Turkish).
  • 19. Labat D., 2005, Recent advances in wavelet analyses: Part 1. A review of concepts, J. Hydrol., 314 (1-4), 275-288, http://dx.doi.org/10.1016/j.jhydrol.2005.04.003.
  • 20. Liang S.X., Li M.C., Sun Z.C., 2008, Prediction models for tidal level including strong meteorologic effects using a neural network, Ocean Eng., 35 (7), 666- 675, http://dx.doi.org/10.1016/j.oceaneng.2007.12.006.
  • 21. Long C. J., Datta S., 1996, Wavelet based feature extraction for phoneme recognition, Proc. 4th Int. Conf. Spoken Lang. Process., 1, 264-267.
  • 22. Lu R.Y., 2002, Decomposition of interdecadal and interannual components for North China rainfall in rainy season, Chinese J. Atmos., 26, 611-624, (in Chinese).
  • 23. Maguire L.P., Roche B., McGinnity T.T., McDaid L. J., 1998, Predicting a chaotic time series using a fuzzy neural network, Inform. Sci., 112 (1-4), 125-136, http://dx.doi.org/10.1016/S0020-0255(98)10026-9.
  • 24. Makarynskyy O., Makarynska D., Kuhn M., Featherstone W.E., 2004, Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia, Estuar. Coast. Shelf Sci., 61 (2), 351-360, http://dx.doi.org/10.1016/j.ecss.2004.06.004.
  • 25. Mallat S., 1998, A wavelet tour of signal processing, Acad. Press, San Diego, 577 pp. Masters T., 1993, Practical Neural Network Recipes in C++, Acad. Press, San Diego, 493 pp.
  • 26. Meyer Y., 1993, Wavelets: algorithms and applications, Soc. Ind. Appl. Math., Philadelphia.
  • 27. Mittal A., Aadaleesan P., 2010, A new Hammerstein model for non-linear system identification, Int. J. Comm. Netw. Secur. (IJCNS), 1 (3), 1-12.
  • 28. Nourani V., Alami M.T., Aminfar M.H., 2009, A combined neural-wavelet model for prediction of watershed precipitation, Lighvanchai, Iran, Eng. Appl. Artif. Intelligence, 22 (3), 466-472.
  • 29. Nourani V., Kisi O., KomasiM., 2011, Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process, J. Hydrol., 402 (1-2), 41-59, http://dx.doi.org/10.1016/j.jhydrol.2011.03.002.
  • 30. Partal T., Cigizoglu H.K., 2008, Estimation and forecasting of daily suspended sediment data using wavelet-neural networks, J. Hydrol., 358 (3-4), 317-331, http://dx.doi.org/10.1016/j.jhydrol.2008.06.013.
  • 31. Partal T., Kişi O., 2007, Wavelet and neuro-fuzzy conjunction model for precipitation forecasting, J. Hydrol., 342 (1-2), 199-212, http://dx.doi.org/10.1016/j.jhydrol.2007.05.026.
  • 32. Partal T., Küçük M., 2006, Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey), Phys. Chem. Earth, 31 (18), 1189-1200, http://dx.doi.org/10.1016/j.pce.2006.04.043.
  • 33. Pfeffer W.T., Harper J.T., O’Neel S., 2008, Kinematic constraints on glacier contributions to 21st-century sea-level rise, Science, 321 (5894), 1340-1343, http://dx.doi.org/10.1126/science.1159099.
  • 34. Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., Nourani V., 2009, Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models, Sci. Total Environ., 407 (17), 4916-4927, http://dx.doi.org/10.1016/j.scitotenv.2009.05.016.
  • 35. Rumelhart D.E., Hinton G. E., Williams R. J., 1986, Learning representations by back-propagating errors, Nature, 323, 533-536, http://dx.doi.org/10.1038/323533a0.
  • 36. Salahshoor K., Kordestani M., Khoshro S., 2010, Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers, Energy, 35 (12), 5472-5482, http://dx.doi.org/10.1016/j.energy.2010.06.001.
  • 37. Wang D., Ding J., 2003, Wavelet network model and its application to the prediction of hydrology, Nature Sci., 1 (1), 67-71.
  • 38. Xingang D., Ping W., Jifan C., 2003, Multi-scale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China, Chinese Science Bulletin, 48 (24), 2730-2734.
  • 39. Zwiers F. W., Storch H. V., 2003, Statistical analysis in climate research, Cambridge Univ. Press, Cambridge, 495 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f30feb9-3442-49f9-970d-fa6263bfeaac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.