Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Istnienie i wyniki oscylacyjne dla równań różniczkowych ułamkowych i inkluzji Caputo
Języki publikacji
Abstrakty
This paper addresses matters pertaining to the existence of solutions, both oscillatory and nonoscillatory, for specific class of Caputo tempered fractional differential equations and inclusions. We achieve this through the application of setvalued analysis, Schauder’s and Martelli’s fixed point theorems, and the approach involving upper and lower solutions. Two examples are included to illustrate our main results.
W tym artykule omówiono kwestie dotyczące istnienia rozwiązań, zarówno oscylacyjnych, jak i nieoscylacyjnych, dla określonej klasy równań różniczkowych ułamkowych i inkluzji Caputo temperowanych. Osiągamy to poprzez zastosowanie analizy wartości zbiorowych, twierdzeń o punktach stałych Schaudera i Martellego oraz podejścia obejmującego rozwiązania górne i dolne. W celu zilustrowania naszych głównych wyników zamieszczono dwa przykłady.
Wydawca
Czasopismo
Rocznik
Tom
Strony
149--171
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Djillali Liabes University of Sidi Bel-Abbes Laboratory of Mathematics P.O. Box 89, Sidi Bel-Abbes 22000, Algeria
autor
- Djillali Liabes University of Sidi Bel-Abbes P. Box 89, Mathematics Laboratory Djillali Liabes University of Sidi Bel-Abbes, Algeria
- Hassiba Benbouali University of Chlef Faculty of Technology, P.O. Box 151 Chlef 02000, Algeria
autor
- Djillali Liabes University of Sidi Bel-Abbes Laboratory of Mathematics P.O. Box 89, Sidi Bel-Abbes 22000, Algeria
autor
- Djillali Liabes University of Sidi Bel-Abbes Laboratory of Mathematics P.O. Box 89, Sidi Bel-Abbes 22000, Algeria
Bibliografia
- [1] S. Abbas, M. Benchohra, and A. Hammoudi. Upper, lower solutions method and extremal solutions for impulsive discontinuous partial fractional differential inclusions. PanAmer. Math. J., 24(1):31-52, 2014. Cited on p. 149.
- [2] S. Abbas, M. Benchohra, and J. J. Trujillo. Upper and lower solutions method for partial fractional differential inclusions with not instantaneous impulses. Prog. Frac. Diff. Appl., 1(1):11-22, 2015. Cited on p. 149.
- [3] S. Abbas, M. Benchohra, J. R. Graef, and J. Henderson. Implicit fractional differential and integral equations, volume 26 of De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, Berlin, 2018. Cited on p. 149.
- [4] M. Benchohra and S. K. Ntouyas. The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions. JIPAM. J. Inequal. Pure Appl. Math., 3(1):14, 2002. Cited on p. 149.
- [5] M. Benchohra, S. Hamani, and Y. Zhou. Oscillation and nonoscillation for Caputo-Hadamard impulsive fractional differential inclusions. Adv. Difference Equ., page 74, 2019. doi: 10.1186/s13662-019-2026-3. Cited on pp. 150 and 151.
- [6] M. Benchohra, E. Karapınar, J. E. Lazreg, and A. Salim. Advanced topics in fractional differential equations—a fixed point approach. Synthesis Lectures on Mathematics and Statistics. Springer, Cham, 2023. doi:10.1007/978-3-031-26928-8. Cited on p. 149.
- [7] M. Benchohra, E. Karapınar, J. E. Lazreg, and A. Salim. Fractional differential equations - new advancements for generalized fractional derivatives. Synthesis Lectures on Mathematics and Statistics. Springer, Cham, 2023. doi: 10.1007/978-3-031-34877-8. Cited on p. 149.
- [8] N. Benkhettou, A. Salim, J. E. Lazreg, S. Abbas, and M. Benchohra. Lakshmikantham monotone iterative principle for hybrid Atangana-Baleanu-Caputo fractional differential equations. An. Univ. Vest Timiş. Ser. Mat.-Inform., 59(1):79-91, 2023. doi: 10.2478/awutm-2023-0007. Cited on p. 149.
- [9] N. Benkhettou, A. Salim, J. E. Lazreg, S. Abbas, and M. Benchohra. Caputo-fabrizio fractional hybrid differential equations via new dhage iteration method. J. Appl. & Pure Math., 5:211-222, 2023. doi:10.23091/japm.2023.211. Cited on p. 149.
- [10] R. G. Buschman. Decomposition of an integral operator by use of Mikusiński calculus. SIAM J. Math. Anal., 3:83-85, 1972. doi:10.1137/0503010. Cited on p. 149.
- [11] J. R. Graef and J. Karsai. Oscillation and nonoscillation in nonlinear impulsive systems with increasing energy. Discrete Contin. Dynam. Systems, pages 166-173, 2001. Cited on p. 150.
- [12] A. Granas and J. Dugundji. Fixed point theory. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8. Cited on p. 155.
- [13] S. Harikrishnan, P. Prakash, and J. J. Nieto. Forced oscillation of solutions of a nonlinear fractional partial differential equation. Appl. Math. Comput., 254:14-19, 2015. doi: 10.1016/j.amc.2014.12.074. Cited on p. 150.
- [14] S. Hu and N. S. Papageorgiou. Handbook of multivalued analysis. Vol. I, volume 419 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4. Cited on pp. 153 and 154.
- [15] A. A. Kilbas. Hadamard-type fractional calculus. J. Korean Math. Soc., 38(6):1191-1204, 2001. Cited on p. 149.
- [16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, 2006. Cited on pp. 149 and 152.
- [17] S. Krim, A. Salim, and M. Benchohra. On implicit caputo tempered fractional boundary value problems with delay. Lett. Nonlinear Anal. Appl., 1(1):12-29, 2023. Cited on pp. 150 and 151.
- [18] S. Krim, A. Salim, and M. Benchohra. Nonlinear contractions and Caputo tempered implicit fractional differential equations in b-metric spaces with infinite delay. Filomat, 37(22):7491-7503, 2023. ISSN 0354-5180. doi: 10.2298/FIL2322491K. Cited on p. 150.
- [19] C. Li, W. Deng, and L. Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B, 24(4):1989-2015, 2019. doi: 10.3934/dcdsb.2019026. Cited on pp. 150, 151, and 152.
- [20] J. A. T. Machado and V. Kiryakova. The chronicles of fractional calculus. Fract. Calc. Appl. Anal., 20(2):307-336, 2017. doi: 10.1515/fca-2017-0017. Cited on p. 149.
- [21] M. Martelli. A Rothe’s type theorem for non-compact acyclic-valued maps. Boll. Un. Mat. Ital. (4), 11(3):70-76, 1975. Cited on p. 160.
- [22] M. Medved and E. Brestovanská. Differential equations with tempered Ψ-Caputo fractional derivative. Math. Model. Anal., 26(4):631-650, 2021. doi: 10.3846/mma.2021.13252. Cited on p. 150.
- [23] N. A. Obeidat and D. E. Bentil. New theories and applications of tempered fractional differential equations. Nonlinear Dyn., 105:1689-1702, 2021. doi: 10.1007/s11071-021-06628-4. Cited on p. 150.
- [24] M. D. Ortigueira, G. Bengochea, and J. T. Machado. Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron. Mathematical Methods in the Applied Sciences, 44(11):9191–9209, 2021. doi: 10.1002/mma.7343. Cited on p. 150.
- [25] F. Sabzikar, M. M. Meerschaert, and J. Chen. Tempered fractional calculus. J. Comput. Phys., 293:14–28, 2015. doi: 10.1016/j.jcp.2014.04.024. Cited on pp. 151 and 152.
- [26] A. Salim, S. Krim, and M. Benchohra. Three-point boundary value problems for implicit caputo tempered fractional differential equations in b-metric spaces. Eur. J. Math. Appl., 3:16, 2023. doi:10.28919/ejma.2023.3.16. Cited on p. 150.
- [27] A. Salim, S. Krim, J. E. Lazreg, and M. Benchohra. On Caputo tempered implicit fractional differential equations in b-metric spaces. Analysis (Berlin), 43(2):129-139, 2023. doi: 10.1515/anly-2022-1114. Cited on p. 150.
- [28] A. Salim, S. T. M. Thabet, I. Kedim, and M. Vivas-Cortez. On the nonlocal hybrid (k, φ)-Hilfer inverse problem with delay and anticipation. AIMS Math., 9(8):22859-22882, 2024. doi: 10.3934/math.20241112. Cited on p. 149.
- [29] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional integrals and derivatives: theory and applications. Transl. from the Russian. New York, NY: Gordon and Breach, 1993. ISBN 2-88124-864-0. Zbl 0818.26003. Cited on p. 149.
- [30] B. Shiri, G.-C. Wu, and D. Baleanu. Collocation methods for terminal value problems of tempered fractional differential equations. Appl. Numer. Math., 156:385-395, 2020. doi: 10.1016/j.apnum.2020.05.007. Cited on pp. 150, 151, and 152.
- [31] V. E. Tarasov. Fractional dynamics. Nonlinear Physical Science. Springer, Heidelberg; Higher Education Press, Beijing, 2010. doi:10.1007/978-3-642-14003-7. Cited on p. 149.
- [32] S. T. M. Thabet and M. B. Dhakne. On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions. Malaya J. Mat., 7(1):20-26, 2019. doi: 10.26637/mjm0701/0005. Cited on p. 149.
- [33] S. T. M. Thabet and I. Kedim. Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains. J. Math., pages Art. ID 8668325, 14, 2023. doi:10.1155/2023/8668325. Cited on p. 149.
- [34] S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, M. Vivas Cortez, and I. Kedim. On coupled snap system with integral boundary conditions in the G-Caputo sense. AIMS Math., 8(6):12576-12605, 2023. doi: 10.3934/math.2023632. Cited on p. 149.
- [35] S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei, and M. I. Ayari. Solvability of a ρ-Hilfer Fractional Snap Dynamic System on Unbounded Domains. Fractal and Fractional, 7(8), 2023. ISSN 2504-3110. doi: 10.3390/fractalfract7080607. ARTICLE-NUMBER: 607. Cited on p. 149.
- [36] C. Tunç and O. Bazighifan. Some new oscillation criteria for fourth order neutral differential equations with distributed delay. Electron. J. Math. Anal. Appl., 7(1):235-241, 2019. ISSN 2090-729X. Zbl 1397.34112. Cited on p. 150.
- [37] Y. Zhou. Basic theory of fractional differential equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. doi: 10.1142/9069. Cited on p. 149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f2638f6-b3c9-4a19-9403-6ecc100b219a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.