PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-variable quaternionic spectral analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
335--379
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider finite dimensional vector spaces Hn over the ring H of all quaternions. In particular, we are interested in certain functions acting on Hn , and corresponding functional equations. Our main results show that (i) all quaternions of H are classified by the spectra of their realizations under representation, (ii) all vectors of Hn are classified by a canonical extended setting of (i), and (iii) the usual spectral analysis on the matricial ring Mn (C) of all (n x n)-matrices over the complex numbers C has close connections with certain “non-linear” functional equations on Hn up to the classification of (ii).
Rocznik
Strony
3
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • St. Ambrose University Department of Mathematics and Statistics 518 W. Locust St., Davenport, IA 52803, USA
  • he University of Iowa Department of Mathematics 14C McLean Hall, Iowa City, IA 52246, USA
Bibliografia
  • [1] I. Cho, A spectral representation of the quaternions, preprint (2020).
  • [2] I. Cho, P.E.T. Jorgensen, Spectral analysis of equations over quaternions, preprint (2020).
  • [3] C.J.L. Doran, Geometric Algebra for Physicists, Cambridge Univ. Press, 2003.
  • [4] F.O. Farid, Q. Wang, F. Zhang, On the eigenvalues of quaternion matrices, Linear Multilinear Algebra 4 (2011), 451-473.
  • [5] C. Flaut, Eigenvalues and eigenvectors for the quaternion matrices of degree two, An. gtiinj. Univ. Ovidius Constanta Ser. Mat. 10 (2002), no. 2, 39-44.
  • [6] P.R. Girard, Einstein’s equations and Clifford algebra, Adv. Appl. Clifford Alg. 9 (1999), no. 2, 225-230.
  • [7] P.R. Halmos, Hilbert Space Problem Book, Springer-Verlag, 1982.
  • [8] P.R. Halmos, Linear Algebra Problem Book, Math. Assoc. Amer., 1995.
  • [9] W.R. Hamilton, Lectures on Quaternions, Cambridge Univ. Press, 1853.
  • [10] I.L. Kantor, A.S. Solodnikov, Hypercomplex Numbers: An Elementary Introuction to Algebras, Springer-Verlag, 1989.
  • [11] V. Kravchenko, Applied Quaternionic Analysis, Heldemann Verlag, 2003.
  • [12] S.D. Leo, G. Scolarici, L. Solombrino, Quaternionic eigenvalue problem, J. Math. Phys. 43 (2002), 5815-5829.
  • [13] N. Mackey, Hamilton and Jacobi meet again: Quaternions and the eigenvalue problem, SIAM J. Matrix Anal. Appl. 16 (1995), no. 2, 421-435.
  • [14] S. Qaisar, L. Zou, Distribution for the standard eigenvalues of quaternion matrices, Internat. Math. Forum 7 (2012), no. 17, 831-838.
  • [15] L. Rodman, Topics in Quaternion Linear Algebra, Prinston Univ. Press, NJ, 2014.
  • [16] B.A. Rozenfeld, The History of non-Eucledean Geometry: Evolution of the Concept of a Geometric Spaces, Springer, 1988.
  • [17] A. Sudbery, Quaternionic Analysis, Math. Proc. Cambridge Philos. Soc. 85 (1998), no. 2, 199-224.
  • [18] L. Taosheng, Eigenvalues and eigenvectors of quaternion matrices, J. Central China Normal Univ. 29 (1995), no. 4, 407-411.
  • [19] J.A. Vince, Geometric Algebra for Computer Graphics, Springer, 2008.
  • [20] J. Voight, Quaternion Algebra, Dept. of Math., Dartmouth Univ., 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f227b9a-c87a-40b4-a668-b1493e6784e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.