PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Electrochemical Method of Copper Powder Synthesis on Rotating Electrode in the Presence of Surfactants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a method of synthesizing copper powders by electrochemical method with the use of a rotating working electrode. The influence of the rotation speed of the working electrode, the current density, the concentration of copper ions, and the addition of ethylene glycol on the shape, size, and size distribution of the obtained powders were investigated. Properties of the synthesized powders were characterized by scanning electron microscopy (SEM) and X-ray powder diffractometry (XRD). It has been shown that it is possible to obtain copper powders with a size of 1 µm by an electrochemical method using the rotary cathode, in sulphate bath with addition of ethylene glycol as a surfactant. Increasing current density causes a decrease in the average size of the obtained powder particles. The addition of 2.5% of ethylene glycol prevents the formation of dendritic powders. The change in the concentration of copper ions in the range from 0.01 to 0.15 mol/dm3 in the electrolyte did not show any significant effect on the size of obtained particles. However, higher concentrations of copper limiting the presence of dendritic-shape particles. Changing the speed of rotation of the electrode affects both the size and the shape of synthesized copper powder. For the rotational speed of the electrode of 115 rpm, the obtained powders have a size distribution in the range of 0-3 µm and an average particle size of 1 µm. The particles had a polygonal shape with an agglomeration tendency.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • CBRTP SA Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645 Warszawa, Poland
autor
  • CBRTP SA Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645 Warszawa, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • CBRTP SA Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645 Warszawa, Poland
Bibliografia
  • [1] W. James, Powder Metallurgy Methods and Applications, Powder Metall., pp. 9-19 (2015).
  • [2] G. Manohar, A. Dey, K.M. Pandey, S.R. Maity, AIP Conference Proceedings 1952, 020041 (2018).
  • [3] M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, JOM. 68, 747-764 (2016).
  • [4] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing, IMR. 61, 315-360 (2016).
  • [5] W.E. Frazier, Metal Additive Manufacturing. A Review, J. Mater. Eng. Perform. 23, 1917-1928 (2014).
  • [6] A. Bandyopadhyay, Y. Zhang, S. Bose, Recent developments in metal additive manufacturing, Curr. Opin. Chem. 28, 96-104 (2020).
  • [7] S. Wahyudi, S. Soepriyanto, M.Z. Mubarok, Sutarno, Synthesis and Applications of Copper Nanopowder - A Review, IOP Conference Series: Materials Science and Engineering 395, 012014 (2018).
  • [8] G.A. Mowbray, Production Methods for Powders of Copper and Copper Alloys: A Critical Review, Powder Metall. 29, 105-107 (1986).
  • [9] K.I. Popov, M.G. Pavlović, Electrodeposition of Metal Powders with Controlled Particle Grain Size and Morphology, in: R.E. White, B.E. Conway, J.O.M. Bockris (Eds.) Modern Aspects of Electrochemistry: Volume 24, Springer US, New York, NY, 1993, pp. 299-391.
  • [10] K. Popov, S. Djokić, N. Nikolić, V. Jovic, Electrodeposition of Metals with Hydrogen Evolution, 2016.
  • [11] N.D. Nikolić, K.I. Popov, L.J. Pavlović, M.G. Pavlović, The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential, J. J. Electroanal. Chem. 588, 88-98 (2006).
  • [12] H.-C. Shin, J. Dong, M. Liu, Nanoporous Structures Prepared by an Electrochemical Deposition Process, Adv. Mater. 15, 1610-1614 (2003).
  • [13] A.H. Abbar, Electrolytic preparation of copper powder with particle size less than 63 µm, Al-Qadisiya J. Eng. Sci. 1, 1, 32 (2008).
  • [14] E. Akbarzadeh, S.E. Shakib, Comparison of effective parameters for copper powder production via electrorefining and electrowinning cells and improvement using DOE methods, Int. J. Miner. Metall. 18, 731-740 (2011).
  • [15] R.K. Nekouei, F. Rashchi, A. Ravanbakhsh, Copper nanopowder synthesis by electrolysis method in nitrate and sulfate solutions, Powder Technol. 250, 91-96 (2013).
  • [16] S. Abbas Jasim, S. Abd Al-kadhum Mohsin, M. Ammory Jaafer, Production of Copper Powder from Ores by Elecrodeposition Process, J. Univ. Babylon Eng. Sci. 27, 233-241 (2019).
  • [17] M.-y. Wang, Z. Wang, Z.-c. Guo, Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism, T. Nonferr. Metal. Soc. 20, 1154-1160 (2010).
  • [18] W. He, X.-c. Duan, L. Zhu, Characterization of ultrafine copper powder prepared by novel electrodeposition method, J. Cent. South Univ. 16, 708-712 (2009).
  • [19] J. Hu, Q. Li, M. An, J. Zhang, P. Yang, Influence of Glycerol on Copper Electrodeposition from Pyrophosphate Bath: Nucleation Mechanism and Performance Characterization, J. Electrochem. Soc. 165, D584-D594 (2018).
  • [20] R.S. Barbosa, G.Y. Koga, M.L.F. Nascimento, C.A.C.d. Souza, Effect of Glycerol Addition on Copper Electrodeposition on Steel Substrate Mater. Res. 25, (2022).
  • [21] P. Sivasakthi, R. Sekar, G.N.K. Ramesh Bapu, Electrodeposition and characterisation of copper deposited from cyanide-free alkaline glycerol complex bath, Transactions of the IMF 93, 32-37 (2015)
  • [22] C. Lin, J. Hu, J. Zhang, P. Yang, X. Kong, G. Han, Q. Li, M. An, A comparative investigation of the effects of some alcohols on copper electrodeposition from pyrophosphate bath, Surf. Interfaces. 22, 100804 (2021).
  • [23] H. Soliman, A.A. El-Moneim, Electrowinning of Copper Using Rotating Cylinder Electrode Utilizing Lead Anode, Eng. J. 03 (04), 4 (2011).
  • [24] C. Fabian, M.J. Ridd, M. Sheehan, Rotating cylinder electrode study of the effect of activated polyacrylamide on surface roughness of electrodeposited copper, Hydrometallurgy 84, 256-263 (2006).
  • [25] H.M.A. Soliman, H.H. Abdel-Rahman, The use of rotating cylinder electrode to study the effect of 1,3-dihydroxypropane on the production of copper powder, J. Braz. Chem. Soc. 17, 705-714 (2006).
  • [26] I.Z. Selim, A.M. Ahmed, H. Soliman, Effect of ethylene glycol addition on copper electrodeposition using rotating cylinder electrode, J. Appl. Electrochem. 17, 203-214 (2001).
  • [27] C. Du, Q. Tan, G. Yin, J. Zhang, 5 - Rotating Disk Electrode Method, in: W. Xing, G. Yin, J. Zhang (Eds.) Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, Amsterdam, 2014, pp. 171-198.
  • [28] G. Denuault, M. Sosna, K.-J. Williams, 11 - Classical Experiments, in: C.G. Zoski (Ed.) Handbook of Electrochemistry, Elsevier, Amsterdam, pp. 431-469, 2007.
  • [29] F.C. Walsh, G. Kear, A.H. Nahlé, J.A. Wharton, L.F. Arenas, The rotating cylinder electrode for studies of corrosion engineering and protection of metals - An illustrated review, Corros. Sci. 123, 1-20 (2017).
  • [30] O. Ige, R. Barker, X. Hu, L. Umoru, A. Neville, Assessing the influence of shear stress and particle impingement on inhibitor efficiency through the application of in-situ electrochemistry in a CO2-saturated environment, Wear. 304, 49-59 (2013).
  • [31] E. Yariv, I. Frankel, The Diffusion-Control Limit Revisited, PRL. 89, (2002).
  • [32] G. Orhan, G. Hapçı, Effect of electrolysis parameters on the morphologies of copper powder obtained in a rotating cylinder electrode cell, Powder Technol. 201, 57-63 (2010).
  • [33] M.G. Pavlović, Š. Kindlová, I. Roušar, The initiation of dendritic growth of electrodeposited copper on a rotating disc electrode with changing copper concentration and diffusion layer thickness, Electrochim. Acta. 37, 23-27 (1992).
Uwagi
1. This work was supported by project from Intelligent Development Operational Program 2014-2020, co-financed by the European Regional Development Fund, project No. POIR.01.01.01-00-1246/20-00.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f22750a-cee6-47d2-8b4e-fd72efb40cb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.