PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Return loss improvement of radial line slot array antennas on closed ring resonator structure at 28 GHz

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Poprawa tłumienia odbicia anten radialnych z matrycą liniową w strukturze rezonatora z zamkniętym pierścieniem przy 28 GH
Języki publikacji
EN
Abstrakty
EN
This paper aims to investigate and design a radial line slot array antenna (RSLA) with closed ring resonator (CRR) for return loss improvement. The CRR printed on a dielectric substrate with a circumference alignment position attached to the RLSA antenna. The CRR structure used the combination of the four rings with a rectangular shape and showed a response in the range of 25.30 GHz up to 31.40 GHz. It is worth mentioning that applying a gap cavity height (h) of the superstrate layer to the CRR structure is needed to improve the return loss significantly. However, as the superstrate layer of the CRR structure is increased the value of the gap cavity height must be adjustable to ensure that the return loss is maintained at the same resonant frequency. The return loss performance showed a significant improvement from -10.30 dB to -12.34 dB for λ/4 gap between the antenna and the superstrate.
PL
Artykuł ma na celu zbadanie i zaprojektowanie radialnej anteny liniowej z matrycą szczelinową (RSLA) z rezonatorem zamkniętym pierścieniem (CRR) w celu poprawy strat odbiciowych. CRR wydrukowany na podłożu dielektrycznym z pozycją wyrównania obwodu przymocowaną do anteny RLSA. Konstrukcja CRR wykorzystywała kombinację czterech pierścieni o prostokątnym kształcie i wykazywała odpowiedź w zakresie od 25,30 GHz do 31,40 GHz. Warto wspomnieć, że zastosowanie wysokości wnęki szczelinowej (h) warstwy superstratu do struktury CRR jest potrzebne do znacznej poprawy strat powrotnych.
Rocznik
Strony
65--69
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka
  • Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka
  • Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka
  • Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka
  • Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka
  • Universiti Teknologi Malaysia (UTM), Malaysia
  • Department of Electrical Engineering, Faculty of Science and Technology, UIN Sultan Syarif Kasim Riau, Indonesia
Bibliografia
  • [1] W. A. W. Muhamad, T. A. Rahman, and M. F. Jamlos, “The Effects of Air-Gap on Spider Radial Line Slot Array ( SRLSA ) Antenna for Point to Point Application,” in 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA), 2013, pp. 388–390.
  • [2] M. I. Imran, A. Riduan, A. R. Tharek, and A. Hasnain, “Beam Squinted Radial Line Slot Array Antenna ( RLSA ) Design for Point- to-Point WLAN Application,” in 2007 Asia-Pacific Conference on Applied Electromagnetics, 2007.
  • [3] M. I. Imran, A. R. Tharek, and A. Hasnain, “An Optimization of Beam Squinted Radial Line Slot Array Antenna Design at 5 . 8 GHz,” in 2008 IEEE International RF and Microwave Conference, 2008, pp. 139–142.
  • [4] P.W.Davis and M.E.Bialkowski, “Comparing Beam Squinting and Reflection Cancelling Slot Methods for Return Loss Improvement in RLSA Antennas,” in IEEE Antennas and Propagation Society International Symposium 1997. Digest, 1997, pp. 1938–1941.
  • [5] T. S. Lim, A. R. Tharek, W. A. W. Khaimddin, and A. Hasnain, “Prototypes Development for Reflection Canceling Slot Design of Radial Line Slot Array (RLSA) Antenna for Direct Broadcast Satellite Reception,” in Asia-Pacific Conference on Applied Electromagnetics, 2003. APACE 2003., 2003, pp. 34–37.
  • [6] T. Nguyen, J. Hirakawa, M. Anda, O. Amana, S. Kareeda, and T. Matsuzaki, “Material Choices of Honeycomb Structures and their Effects in mm-Wave RLSAs,” in 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), 2014, pp. 417–419.
  • [7] T. Nguyen et al., “Study of Material Loss in mm-Wave RLSA with Honeycomb Structure,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013, pp. 328–329.
  • [8] T. Nguyen et al., “A Concise Design of Large mm-Wave Radial Line Slot Antenna with Honeycomb Structures for Space Application,” in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 2014.
  • [9] S. C. Pavone, A. Mazzinghi, A. Freni, and M. Albani, “Wideband analysis of RLSA Bessel beam launchers based on standing and inward traveling wave aperture distributions for electromagnetic pulse generation,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017, pp. 3649–3652.
  • [10] M. Ettorre et al., “Experimental Validation of Bessel Beam Generation Using an Inward Hankel Aperture Distribution,” IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2539–2544, 2015.
  • [11] A. Mazzinghi et al., “Bessel Beam Generation with a RLSA Antenna for Non-Contact Detection of Buried Objects,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2014, pp. 762–766.
  • [12] A. Mazzinghi et al., “Large Depth of Field Pseudo-Bessel Beam Generation With a RLSA Antenna,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 3911–3919, 2014.
  • [13] A. Mazzinghi et al., “Bessel Beam Generation with a RLSA Antenna,” in ICECom 2013, 2013, pp. 3–6.
  • [14] M. Bray and J. H. Road, “A Radial Line Slot Array Antenna for Deep Space Missions,” in 2017 IEEE Aerospace Conference, 2017.
  • [15] A. J. A. Al-gburi, I. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, “Compact Size and High Gain of CPW-fed UWB Strawberry Artistic shaped Printed Monopole Antennas using FSS Single Layer Reflector,” IEEE Access, vol. 8, no. 5, pp. 92697–92707, 2020.
  • [16] A. J. A. Al-gburi et al., “A compact UWB FSS single layer with stopband properties for shielding applications,” Przegląd Elektrotechniczny, no. 2, pp. 165–168, 2021.
  • [17] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, “Band-notch effect of U-shaped split ring resonator structure at ultra wideband monopole antenna Band-notch Effect of U-shaped Split Ring Resonator Structure at Ultra Wide-band Monopole Antenna,” Int. J. Appl. Eng. Res., vol. 12, no. 15, pp. 4782– 4789, 2017.
  • [18] I. M. Ibrahim, A. J. A. Al-gburi, Z. Zakaria, and H. A. Bakar, “Parametric Study of Modified U-shaped Split Ring Resonator Structure Dimension at Ultra-Wide-band Monopole Antenna,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2–5, pp. 53– 57, 2018.
  • [19] A. J. A. Al-Gburi, I. Ibrahim, and Z. Zakaria, “Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna,” J. Comput. Theor. Nanosci., vol. 17, no. 2–3, pp. 1469–1473, 2020.
  • [20] A. J. Abdullah Al-Gburi, I. M. Ibrahim, Z. Zakaria, and A. D. Khaleel, “Gain Improvement and Bandwidth Extension of Ultra- Wide Band Micro-Strip Patch Antenna Using Electromagnetic Band Gap Slots and Superstrate Techniques,” J. Comput. Theor. Nanosci., vol. 17, no. 2–3, pp. 985–989, 2020.
  • [21] A. J. A. Al-Gburi, I. Ibrahim, and Z. Zakaria, “A Miniature Raspberry Shaped UWB Monopole Antenna based on Microwave Imaging Scanning Technique for Kidney Stone Early Detection,” Int. J. Psychosoc. Rehabil., vol. 24, no. 2, pp. 1755–1763, 2020.
  • [22] M. Y. Zeain et al., “Design of helical antenna for next generation wireless communication,” Prz. Elektrotechniczny, no. 11, pp. 96–99, 2020.
  • [23] H. H. Keriee et al., “High gain antenna at 915 mhz for off grid wireless networks,” Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2449–2454, 2020.
  • [24] M. Y. Zeain et al., “Design of a wideband strip helical antenna for 5G applications,” Bull. Electr. Eng. Informatics, vol. 9, no. 5, pp. 1958–1963, 2020.
  • [25] H. Nornikman, B. H. Ahmad, M. Z. A. A. Aziz, F. Malek, H. Imran, and A. R. Othman, “Study and Simulation of An Edge Couple Split Ring Resonator (EC-SRR) on Truncated Pyramidal Microwave Absorber,” Prog. Electromagn. Res. PIER, vol. 127, no. 3, pp. 319–334, 2012.
  • [26] Y. Wang and D. Piao, “A High-Gain Resonant Cavity Antenna with Orthogonal Polarizations Working at 28 GHz,” in 2016 IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 2016, pp. 248–250.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f214b46-44fd-4347-9dc7-0723221a64a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.