PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constructing Node-Independent Spanning Trees in Augmented Cubes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a network, edge/node-independent spanning trees (ISTs) can not only tolerate faulty edges/nodes, but also be used to distribute secure messages. As important node-symmetric variants of the hypercubes, the augmented cubes have received much attention from researchers. The n-dimensional augmented cube AQn is both (2n ‒ 1)-edge-connected and (2n ‒ 1)-nodeconnected (n≠3), thus the well-known edge conjecture and node conjecture of ISTs are both interesting questions in AQn. So far, the edge conjecture on augmented cubes was proved to be true. However, the node conjecture on AQn is still open. In this paper, we further study the construction principle of the node-ISTs by using the double neighbors of every node in the higher dimension. We prove the existence of 2k − 1 node-ISTs rooted at node 0 in AQn ( 00...0 n – k ) ( n ≥ k ≥ 4 ) by proposing an ingenious way of construction and propose a corresponding O (N logN ) time algorithm, where N = 2k is the number of nodes in AQn ( 00...0n – k ) .
Wydawca
Rocznik
Strony
103--128
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • School of Computer Science and Technology, Soochow University, Suzhou 215006, China
autor
  • School of Computer Science and Technology, Soochow University, Suzhou 215006, China
autor
  • School of Computer Science and Technology, Soochow University, Suzhou 215006, China
  • College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
autor
  • College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
autor
  • School of Computer Science and Technology, Soochow University, Suzhou 215006, China
Bibliografia
  • [1] Bao F, Funyu Y, Hamada Y, and Igarashi Y. Reliable broadcasting and secure distributing in channel networks, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, vol. E81-A, pp. 796-806, 1998. URL http://scholarbank.nus.edu.sg/handle/10635/134137.
  • [2] F. Bao, Y. Igarashi, and Öhring SR. Reliable broadcasting in product networks, Discrete Appl. Math., 1998. 83(1-3):3-20. doi:10.1016/s0166-218x(97)00100-5.
  • [3] Chen YS, Chiang CY, and Chen CY. Multi-node broadcasting in all-ported 3-D wormhole-routed torus using an aggregation-then-distribution strategy, J. Syst. Architect., 2004. 50(9):575-589. doi:10.1016/j.sysarc.2004.01.001.
  • [4] Tseng Y-C, Wang S-Y, and Ho C-W. Efficient broadcasting in wormhole-routed multicomputers: A network-partitioning approach, IEEE Trans. Parallel and Distributed Systems, 1999. 10(1):44-61. doi:10.1109/71.744837.
  • [5] Elhourani T, Gopalan A, Ramasubramanian S. IP fast rerouting for multi-link failures, IEEE/ACM T. Network., 2016. 24(5):3014-3025. doi:10.1109/tnet.2016.2516442.
  • [6] Gopalan A, Ramasubramanian S. IP fast rerouting and disjoint multipath routing with three edge-independent spanning trees, IEEE/ACM T. Network., 2016. 24(3):1336-1349. doi:10.1109/tnet.2015.2440179.
  • [7] Hsieh S-Y, and Wu C-Y. Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults, J. Comb. Optim., 2010. 19(1):16-30. doi:10.1007/s10878-008-9157-x.
  • [8] Itai A, and Rodeh M. The multi-tree approach to reliability in distributed networks, Inform. Comput., 1988. 79(1):43-59. doi:10.1016/0890-5401(88)90016-8.
  • [9] Zehavi A, and Itai A. Three tree-paths, J. Graph Theory, 1989. 13(2):175-188. doi:org/10.1002/jgt.3190130205.
  • [10] Cheriyan J, and Maheshwari SN. Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs, J. Algorithms, 1988. 9(4): 507-537. doi:10.1016/0196-6774(88)90015-6.
  • [11] Curran S, Lee O, and Yu X. Finding four independent trees, SIAM J. Comput., 2006. 35(5):1023-1058. doi:10.1137/s0097539703436734.
  • [12] Gopalan A, and Ramasubramanian S. On constructing three edge independent spanning trees, Submitted to SIAM J. Comput., 2011. http://pdfs.semanticscholar.org/b458/a3f665cd41f1ec42fb3cebb5176c369a87ec.pdf.
  • [13] Hoyer A, and Thomas R. Four edge-independent spanning trees, SIAM J. Discrete Math., 2018. 32(1):233-248. doi:org/10.1137/17m1134056.
  • [14] Huck A. Independent trees in graphs, Graphs and Combinatorics, 1994. 10(1):29-45. doi:10.1007/bf01202468.
  • [15] Huck A. Independent trees in planar graphs, Graphs and Combinatorics, 1999. 15(1):29-77. doi:10.1007/pl00021190.
  • [16] Miura K, Takahashi D, Nakano S, and Nishizeki T. A linear-time algorithm to find four independent spanning trees in four-connected planar graphs, Int. J. Found. Comput. S., 1999. 10(2):195-210. doi:10.1142/s0129054199000149.
  • [17] Nagai S, and Nakano A. A linear-time algorithm to find independent spanning trees in maximal planar graphs, IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, 2001. E84-A(5):1102-1109. URL https://search.ieice.org/bin/summary.php?id=e84-a_5 _1102.
  • [18] Obokata K, Iwasaki Y, Bao F, and Igarashi Y. Independent spanning trees of product graphs and their construction, IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, 1996. E79-A(11):1894-1903. URL https://search.ieice.org/bin/summary.php?id=e79-a_11_1894&category=A&year=1996.
  • [19] Iwasaki Y, Kajiwara Y, Obokata K, and Igarashi Y. Independent spanning trees of chordal rings, Inform. Process. Lett., 1999. 69(3):155-160. doi:10.1016/s0020-0190(98)00205-1.
  • [20] Yang J-S, Chang J-M, Tang S-M, and Wang Y-L. Reducing the height of independent spanning trees in chordal rings, IEEE Trans. Parallel and Distributed Systems, 2007. 18(5):644-657. doi:10.1109/tpds.2007.351709.
  • [21] Ge Z-Y, and Hakimi SL. Disjoint rooted spanning trees with small depths in deBruijn and Kautz graphs, SIAM J. Comput., 1997. 26(1):79-92. doi:10.1137/s0097539793244198.
  • [22] Kim J-S, Lee H-O, Cheng E, and László L. Independent spanning trees on even networks, Inform. Sciences, 2011. 181(13):2892-2905. doi:10.1016/j.ins.2011.02.012.
  • [23] Kim J-S, Lee H-O, Cheng E, and László L. Optimal independent spanning trees on odd graphs, J. Supercomputing, 2011. 56(2):212-225. doi:10.1007/s11227-009-0363-9.
  • [24] Cheng B, Fan J, Jia X, and Zhang S. Independent spanning trees in crossed cubes, Inform. Sciences, 2013. 233(1):276-289. doi:10.1016/j.ins.2013.01.010.
  • [25] Cheng B, Fan J, Jia X, and Wang J. Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes, J. Parallel Distr. Comput., 2013. 73(5):641-652. doi:10.1016/j.jpdc.2013.01.009.
  • [26] Cheng B, Fan J, Lyu Q, Zhou J, and Liu Z. Constructing independent spanning trees with height n on the n-dimensional crossed cube. Futur. Gener. Comput. Syst., 2018. 87:404-415. doi:10.1016/j.future.2018.02.010.
  • [27] Cheng B, Fan J, Jia X, Zhang S, Chen B. Constructive algorithm of independent spanning trees on Möbius cubes, Comput. J., 2013. 56(11):1347-1362. doi:10.1093/comjnl/bxs123.
  • [28] Cheng B, Fan J, Jia X, and Jia J. Parallel construction of independent spanning trees and an application in diagnosis on Möbius cubes, J. Supercomputing, 2013. 65(3):1279-1301. doi:10.1007/s11227-013-0883-1.
  • [29] S.-Y. Hsieh and C.-J. Tu, Constructing edge-disjoint spanning trees in locally twisted cubes, Theor. Comput. Sci., vol. 410, no. 8-10, pp. 926-932, 2009. https://doi.org/10.1016/j.tcs.2008.12.025.
  • [30] Liu Y-J, Chou WY, Lan JK, and Chen C. Constructing independent spanning trees for locally twisted cubes, Theor. Comput. Sci., 2011. 412(22):2237-2252. doi:10.1016/j.tcs.2010.12.061.
  • [31] Wang Y, Fan J, Zhou G, and Jia X. Independent spanning trees on twisted cubes, J. Parallel Distr. Comput., 2012. 72(1):58-69. doi:10.1016/j.jpdc.2011.09.002.
  • [32] Yang M-C. Constructing edge-disjoint spanning trees in twisted cubes, Inform. Sciences, 2010. 180(20):4075-4083. doi:10.1016/j.ins.2010.05.041.
  • [33] Yang J-S, Chang J-M, and Chan H-C. Independent spanning trees on folded hypercubes, in: Proceedings of 10th International Symposium on Pervasive Systems, Algorithms, and Networks (I-SPAN 2009), Kaohsiung, Taiwan, 2009 pp. 73-83. doi:10.1109/i-span.2009.55.
  • [34] Cheng B, Fan J, Lin C-K, Jia X, Li X. Constructing node-independent spanning trees on the line graph of the hypercube by an independent forest scheme, J. Parallel Distrib. Comput., 2019. 134:104-115. doi:10.1016/j.jpdc.2019.08.006.
  • [35] Yang J-S, and Chang J-M. Independent spanning trees on folded hyper-stars, Networks, 2010. 56(4):272-281. doi:10.1002/net.20389.
  • [36] Cheng B, Fan J, Jia X. Dimensional-permutation-based independent spanning trees in bijective connection networks, IEEE Trans. Parallel and Distributed Systems, 2015. 26(1):45-53. doi:10.1109/tpds.2014.2307871.
  • [37] Tang S-M, Yang J-S, Wang Y-L, and Chang JM. Independent spanning trees on multidimensional torus networks, IEEE Trans. Comput., 2010. 59(1):93-102. doi:10.1109/tc.2009.98.
  • [38] Yang J-S, Chang J-M, Tang S-M, and Wang Y-L. On the independent spanning trees of recursive circulant graphs G(cdm, d) with d > 2, Theor. Comput. Sci., 2009. 410(21-23):2001-2010. doi:10.1016/j.tcs.2008.12.042.
  • [39] Chan H-C, Chang J-M, Wang Y-L, and Horng S-J. Geodesic-pancyclicity and fault-tolerant panconnectivity of augmented cubes, Appl. Math. Comput., 2009. 207(2):333-339. doi:10.1016/j.amc.2008.10.061.
  • [40] Cheng D, Hao R-X, and Feng Y-Q. Conditional edge-fault pancyclicity of augmented cubes, Theor. Comput. Sci., vol. 2013. 510:94-101. doi:10.1016/j.tcs.2013.09.010.
  • [41] Choudum SA, and Sunitha V. Augmented cubes, Networks, 2002. 40(2):71-84. doi:10.1002/net.10033.
  • [42] Fu J-S. Edge-fault-tolerant vertex-pancyclicity of augmented cubes, Inf. Process. Lett., 2010. 110(11):439-443. doi:10.1016/j.ipl.2010.04.009.
  • [43] Hsieh S-Y, and Cian Y-R. Conditional edge-fault Hamiltonicity of augmented cubes, Inform. Sciences, 2010. 180(13):2596-2617. doi:10.1016/j.ins.2010.03.005.
  • [44] Ma M, Liu G, Xu J-M. The super connectivity of augmented cubes, Inf. Process. Lett., 2008. 106(2):59-63. doi:10.1016/j.ipl.2007.10.005.
  • [45] Mane SA, Kandekar SA, Waphare BN. Constructing spanning trees in augmented cubes, J. Parallel Distrib. Comput., 2018. 122:188-194. doi10.1016/j.jpdc.2018.08.006.
  • [46] Wang Y, Shen H, Fan J. Edge-independent spanning trees in augmented cubes, Theor. Comput. Sci., 2017. 670:23-32. doi:10.1016/j.tcs.2017.01.016.
  • [47] Cheng B, Fan J, Lin C-K, Wang Y, and Jia X. An improved algorithm to construct edge-independent spanning trees in augmented cubes, Discrete Appl. Math., 2020. 277:55-70. doi:10.1016/j.dam.2019.09.021.
  • [48] Tang S-M, Wang Y-L, and Lee JX. On the height of independent spanning trees of a k-connected k-regular graph, Proceedings of National Computer Symposium. 2001: A159-A164. URL https://www.researchgate.net/publication/248789350_On_the_height_of_independent_spanning_trees_of_a_k_ - _connected_k_ -_regular_graph.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f203b93-a8a2-4669-b838-ed84d268cdd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.