PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial intelligence versus natural intelligence in mineral processing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article aims to introduce the terms NI-Natural Intelligence, AI-Artificial Intelligence, ML-Machine Learning, DL-Deep Learning, ES-Expert Systems and etc. used by modern digital world to mining and mineral processing and to show the main differences between them. As well known, each scientific and technological step in mineral industry creates huge amount of raw data and there is a serious necessity to firstly classify them. Afterwards experts should find alternative solutions in order to get optimal results by using those parameters and relations between them using special simulation software platforms. Development of these simulation models for such complex operations is not only time consuming and lacks real time applicability but also requires integration of multiple software platforms, intensive process knowledge and extensive model validation. An example case study is also demonstrated and the results are discussed within the article covering the main inferences, comments and decision during NI use for the experimental parameters used in a flotation related postgraduate study and compares with possible AI use.
Rocznik
Strony
art. no. 167501
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Turkish-German University, The Institute of the Graduate Studies in Science and Engineering, Department of Robotics and Intelligent Systems, 34820, Beykoz, Istanbul, Turkiye
Bibliografia
  • ALI, D., FRIMPONG, S., 2020. Artificial intelligence, machine learning and process automation: existing knowledge frontier and way forward for mining sector. Artificial Intelligence Review (53) 6025-6042.
  • ALI, D., HAYAT, M. B., ALAGHA, L., MOLATLHEGI, O. K., 2018. An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal. Advanced Powder Technology, 29 (12) 3493-3506.
  • AL-THYABAT, S., 2008. On the optimization of froth flotation by the use of an artificial neural network. J. China Univ. Min. Technol. (18) 418-426.
  • AYOK, T., TOLUN, R., 1979. The concentration of low grade colemanite tailings by flotation. Tübitak, Marmara Research Centre Special Report, Gebze, (Turkish Text).
  • BEKAT, T., ERDOGAN, M., INAL, F., GENC, A., 2012. Prediction of the bottom ash formed in a coal-fired power plant using artificial neural networks. Energy (45) 882-887.
  • BUTTERMORE, W. H., SLOMKA, B. J., 1991. The effect of sonic treatment on the flotability of oxidized coal. Int. J. Miner. Process. (32) 251–257.
  • CHENG, J., LI, Y., ZHOU, J., LIU, J., CEN, K., 2010. Maximum solid concentrations of coal water slurries predicted by neural network models. Fuel Process. Technol. (91) 1832-1838.
  • CROSS, N. 1999. Natural Intelligence In Design. Design Studies, 20 (1) 25–39.
  • FENG, D., ALDRICH, C., 2005. Effect of preconditioning on the flotation of coal. Chem. Eng. Commun. (192) 972–983
  • FENG, Q., ZHANG, J., ZHANG, X., WEN, S., 2015. Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network. Fuel Process. Technol. (129) 120-129.
  • GOMEZ-FLORES, A., HEYES, G. W., ILYAS, S., KIM, H., 2022. Prediction of grade and recovery in flotation from physicochemical and operational aspects using machine learning models. Minerals Engineering (183) 107627.
  • HARRISON, C. D., RALEIGH Jr, C.E., VUJNOVIC, B. J., 2002. The use of ultrasound for cleaning coal. In: The Proceedings of the 19th Annual International Coal Preparation Exhibition and Conference, p. 61–67
  • JORJANI, E., ASADOLLAHI POORALI, H., SAM, A., CHELGANI, S.C., MESROGHLI, S., SHAYESTEHFAR, M.R., 2009. Prediction of coal response to froth flotation based on coal analysis using regression and artificial neural network. Minerals Engineering (22) 970-976.
  • JORJANI, E., CHELGANI, S.C., MESROGHLI, S., 2017. Prediction of microbial desulfurization of coal using artificial neural networks. Minerals Engineering, (20) 1285–1292.
  • KHODAKARAMI, M., MOLATLHEGI, O., ALAGHA, L., 2017. Evaluation of ash and coal response to hybrid polymeric nanoparticles in flotation process: data analysis using self-learning neural network. Int. J. Coal Prep. Util. 1-20.
  • KHOSHJAVAN, S., REZAI, B., HEIDARY, M., 2011. Evaluation of effect of coal chemical properties on coal swelling index using artificial neural networks. Expert Syst. Appl. (38) 12906-12912.
  • KOSE, M., 1984. Arsenic recovery from Kutahya-Emet colemanite ore with arsenic sulphides by flotation. MTA Project Report, Ankara, (Turkish Text).
  • KOSE, M., ERTEKIN, S., GUNDUZ, M., OZTOPRAK, M., 1989. The selective recovering possibilities of the colemanite and arsenic minerals from Emet concentrator tailing disposal. In: The 11th Mining, Scientific and Technological Congress of Turkiye, Ankara, 407-415, (Turkish Text).
  • LAWRENCE, N. D., 2018. Natural and Artificial Intelligence, Amazon Thursday Thoughts on Mar 29, https://inverseprobability.com/talks/notes/on-natural-and-artificial-intelligence.html.
  • LOBERFELD, A., 2019. Machine Learning Algorithms in Layman’s Terms, Part 1 and 2. Towards Data Science, https://towardsdatascience.com/machine-learning-algorithms-in-laymans-terms-part-1-d0368d769a7b.
  • MOHANTY, S., 2009. Artificial neural network based system identification and model predictive control of a flotation column. J. Process Control (19) 991-999.
  • OZKAN, S. G., 2012. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel (93) 576-580.
  • OZKAN, S. G., 1994. Flotation studies of colemanite ores from the Emet deposits of Turkiye. PhD Thesis. University of Birmingham. UK.
  • PUSAT, S., AKKOYUNLU, M.T., PEKEL, E., AKKOYUNLU, M.C., OZKAN, C., KARA, S.S., 2016. Estimation of coal moisture content in convective drying process using ANFIS. Fuel Process. Technol. 147 (147) 12-17.
  • REGUNATH, G., 2021. Understanding The Difference Between AI, ML, And DL: Using An Incredibly Simple Example. Advancing Analytics, https://www.advancinganalytics.co.uk/blog/2021/12/15/understanding-the-difference-between-ai-ml-and-dl-using-an-incredibly-simple-example.
  • SADEGHIAMIRSHAHIDI, M., ESLAMKISH, T., DOULATI ARDEJANI, F., 2013. Application of artificial neural networks to predict pyrite oxidation in a coal washing refuse pile. Fuel (104) 163-169.
  • SWANA, E., DOORSAMY, W., 2021. An unsupervised learning approach to condition assessment on a wound-rotor induction generator. Energies 14 (3) 602.
  • YARAR, B., 1971. Beneficiation of colemanite by flotation. Tübitak Project No: 228, Ankara, (Turkish Text).
  • YARAR, B., MAGER, J., 1979. Upgrading of borates and colemanite flotation. Chemical Engineering Industry, 58(2)98-101, Poland (Polish Text).
  • ZHANG, Z., JIAN-GUO, Y., YU-LING, W., WEN-CHENG, X., XIANG-YANG, L. 2011. A study on fast predicting the washability curve of coal. Procedia Environ. Sci. (11) 1580-1584.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f1fad63-af7b-4d94-af7b-6cf839e2cb6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.