PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uniform exponential stabilization of distributed bilinear parabolic time delay systems with bounded feedback control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we deal with the problem of uniform exponential stabilization for a class of distributed bilinear parabolic systems with time delay in a Hilbert space by means of a bounded feedback control. The uniform exponential stabilization problem of such a system reduces to stabilizing only its projection on a suitable finite dimensional subspace. Furthermore, the stabilizing feedback control depends only on the state projection on the finite dimensional subspace. An explicit decay rate estimate of the stabilized state is given provided that a non-standard weaker observability condition is satisfied. Illustrative examples for partial functional differential equations are displayed.
Rocznik
Strony
257--278
Opis fizyczny
Bibliogr. 21 poz., wzory
Twórcy
  • Laboratory of Mathematics and Applications, ENSAM, Hassan II University of Casablanca, Morocco
  • Laboratory of Fundamental and Applied Mathematics LAMFA, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
Bibliografia
  • [1] C. Antoniades and P.D. Christofides: Non-linear feedback control of parabolic partial differential difference equation systems. International Journal of Control, 73(17), (2000), 1572-1591. DOI: 10.1080/00207170050197696.
  • [2] H. Brézis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Number 5 in North-Holland Mathematics Studies, Notas de Matemática. North-Holland Publishing Company, 1973.
  • [3] D. Chen, D.H. Sun, Y. Li, M. Zhao and L.J. Zheng: Robust stabilization and H∞ control of cooperative driving system with time delay in variable speed-limited area from cyber-physical perspective. Asian Journal of Control, 22(1), (2020), 373-387. DOI: 10.1002/asjc.1870.
  • [4] A. Filasova, D. Gontkovič and D. Krokavec: LMI based control design for linear systems with distributed time delays. Archives of Control Sciences, 22(2), (2012), 217-231.
  • [5] H.R. Henriquez: Stabilization of hereditary distributed parameter control systems. Systems & Control Letters, 44(1), (2001), 35-43. DOI: 10.1016/ S0167-6911(01)00104-9.
  • [6] A. El Houch, A. Tsouli, Y. Benslimane and A. Attioui: Feedback stabilisation and polynomial decay estimate for distributed bilinear parabolic systems with time delay. International Journal of Control, 94(6), (2019), 1-11, 2019. DOI: 10.1080/00207179.2019.1663370.
  • [7] T. Kato: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer Berlin Heidelberg, 2012.
  • [8] A. Kowalewski: Pointwise observation of the state given by complex time lag parabolic system. Archives of Control Sciences, 27(1), (2017), 77-89. DOI: 10.1515/acsc-2017-0005.
  • [9] A. Kowalewski: Extremal problems for parabolic systems with time-varying lags. Archives of Control Sciences, 28(1), (2018), 89-104. DOI: 10.24425/119078.
  • [10] S. Krantz and H. Parks: A Primer of Real Analytic Functions. Advanced Texts Series. Birkhäuser Boston, 2002.
  • [11] X. Li, J.-A. Fang, H. Li and W. Duan: Exponential stabilization of time-varying delayed complex-valued memristor-based neural networks via impulsive control. Asian Journal of Control, 20(6), (2018), 2290-2301. DOI: 10.1002/asjc.1729.
  • [12] S. Nakagiri and M. Yamamoto: Feedback stabilization of linear retarded systems in Banach spaces. Journal of Mathematical Analysis and Applications, 262(1), (2001), 160-178. DOI: 10.1006/jmaa.2001.7552.
  • [13] S.-I. Niculescu, J.-M. Dion and L. Dugard: Stabilization criteria for bilinear systems with delayed state and saturating actuators. IFAC Proceedings Volumes, 28(8), (1995), 261-266.
  • [14] Y. Orlov, Y. Lou and P.D. Christofides: Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control. International Journal of Control, 77(12), (2004), 1115-1136. DOI: 10.1080/0020717042000273078.
  • [15] M. Ouzahra: Feedback stabilization of parabolic systems with bilinear controls. Electronic Journal of Differential Equations (EJDE), 2011(38), (2011), 1-10. https://ejde.math.txstate.edu.
  • [16] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, 1983.
  • [17] A.J. Pritchard and J. Zabczyk: Stability and stabilizability of infinite dimensional systems. SIAM Review, 23(1), (1981), 25-52. DOI: 10.1137/1023003.
  • [18] A. Tichonov and A. Samarski: Partial Differential Equations of Mathematical Physics, volume 1. Holden-Day, 1964.
  • [19] R. Triggiani: On the stabilizability problem in banach space. Journal of Mathematical Analysis and Applications, 52(3), (1975), 383-403.
  • [20] A. Tsouli and A. Boutoulout: Polynomial decay rate estimate for bilinear parabolic systems under weak observability condition. Rendiconti del Circolo Matematico di Palermo, 64(3), (2015), 347-364. DOI: 10.1007/s12215-015-0204-z.
  • [21] J. Wu: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences. Springer New York, 1996.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f1d9e5b-7ad7-43d7-81f9-a206ff3415b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.