Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The second-leading cause of death for women is breast cancer. Consequently, a precise early diagnosis is essential. With the rapid development of artificial intelligence, computer-aided diagnosis can efficiently assist radiologists in diagnosing breast problems. Mammography images, breast thermal images, and breast ultrasound images are the three ways to diagnose breast cancer. The paper will discuss some recent developments in machine learning and deep learning in three different breast cancer diagnosis methods. The three components of conventional machine learning methods are image preprocessing, segmentation, feature extraction, and image classification. Deep learning includes convolutional neural networks, transfer learning, and other methods. Additionally, the benefits and drawbacks of different methods are thoroughly contrasted. Finally, we also provide a summary of the challenges and potential futures for breast cancer diagnosis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
119--148
Opis fizyczny
Bibliogr. 166 poz., rys., tab.
Twórcy
autor
- School of Educational Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
autor
- School of Educational Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
autor
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
autor
- School of Educational Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
autor
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
Bibliografia
- [1] Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021;127(16):3029-30.
- [2] Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA – Cancer J Clin 2023;73(1):17-48.
- [3] Zhou X, Li C, Rahaman MM, Yao Y, Ai S, Sun C, et al. A comprehensive review for breast histopathology image analysis using classical and deep neural networks. IEEE Access 2020;8:90931-56.
- [4] Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017;50(1):33.
- [5] Fiorica JV. Breast cancer screening, mammography, and other modalities. Clin Obstet Gynecol 2016;59(4):688-709.
- [6] McDonald RJ, Schwartz KM, Eckel LJ, Diehn FE, Hunt CH, Bartholmai BJ, et al. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 2015;22(9):1191-8.
- [7] Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, et al. Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. JNCI – J Natl Cancer Instit 2019;111(9):916-22.
- [8] Guo X, Zhang YD, Lu SY, Lu ZH. A survey on machine learning in COVID-19 diagnosis. CMES – Comput Model Eng Sci 2022;130(1):23-71.
- [9] Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA – Cancer J Clin 2019;69(2):127-57.
- [10] McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577(7788):89-94.
- [11] McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577(7788):89.
- [12] Jiang N, Xu XR. Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using artificial neural network. Medicine 2019;98(20).
- [13] Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: A primer for radiologists. Radiographics 2017;37(7):2113-31.
- [14] Wang Z, O’Boyle M. Machine learning in compiler optimization. Proc IEEE 2018; 106(11):1879-901.
- [15] Ongsulee P, Ieee. Artificial intelligence, machine learning and deep learning. In: Proc. 2017 15th international conference on ICT and knowledge engineering (ICT&KE); 2017.
- [16] Wang ZQ, Li M, Wang HX, Jiang HY, Yao YD, Zhang H, et al. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access 2019;7:105146-58.
- [17] Zhang L, Wang S, Liu B. Deep learning for sentiment analysis: A survey. Wiley Interdiscip Rev-Data Min Knowl Discovery 2018;8(4).
- [18] Badillo S, Banfai B, Birzele F, Davydov II, Hutchinson L, Kam-Thong T, et al. An introduction to machine learning. Clin Pharmacol Ther 2020;107(4):871-85.
- [19] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436-44.
- [20] Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Mark 2021;31(3):685-95.
- [21] Lakshminarayanan V. The handbook of medical image perception and techniques. Contemp Phys 2021;62(2):113-4.
- [22] Shen RB, Yan KZ, Tian K, Jiang C, Zhou K. Breast mass detection from the digitized X-ray mammograms based on the combination of deep active learning and self-paced learning. Future Gener Comput Syst – Int J Esci 2019;101:668-79.
- [23] Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology 2002; 225(1):165-75.
- [24] Dowd WJO. Medical device safety: the regulation of medical devices for public health and safety. Phys Med Biol 2002;47(2):349.
- [25] Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer WP. 2001:212-8.
- [26] Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. INbreast: Toward a full-field digital mammographic database. Acad Radiol 2012;19(2): 236-48.
- [27] Al-masni MA, Al-antari MA, Park JM, Gi G, Kim TY, Rivera P, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput Methods Programs Biomed 2018;157: 85-94.
- [28] Sannasi Chakravarthy SR, Rajaguru H. Automatic detection and classification of mammograms using improved extreme learning machine with deep learning. IRBM 2022;43(1):49-61.
- [29] Hossam A, Harb HM, Abd El Kader HM. Automatic image segmentation method for breast cancer analysis using thermography. J Eng Sci 2018;46(1):12-32.
- [30] Mance M, Bulic K, Antabak A, Milosevic M. The influence of size, depth and histologic characteristics of invasive ductal breast carcinoma on thermographic properties of the breast. Excli J 2019;18:549-57.
- [31] Silva LF, Saade DCM, Sequeiros GO, Silva AC, Paiva AC, Bravo RS, et al. A new database for breast research with infrared image. J Med Imaging Health Inf 2014; 4(1):92-100.
- [32] Brem RF, Lenihan MJ, Lieberman J, Torrente J. Screening breast ultrasound: past, present, and future. Am J Roentgenol 2015;204(2):234-40.
- [33] Qi X, Zhang L, Chen Y, Pi Y, Chen Y, Lv Q, et al. Automated diagnosis of breast ultrasonography images using deep neural networks. Med Image Anal 2019;52: 185-98.
- [34] Sigrist RMS, Liau J, El Kaffas A, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics 2017;7 (5):1303-29.
- [35] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief 2020;28:104863.
- [36] Arora R, Rai PK, Raman B. Deep feature-based automatic classification of mammograms. Med Biol Eng Comput 2020;58(6):1199-211.
- [37] Karthiga R, Narasimhan K, Amirtharajan R. Diagnosis of breast cancer for modern mammography using artificial intelligence. Math Comput Simul 2022;202: 316-30.
- [38] Zeiser FA, da Costa CA, Zonta T, Marques NMC, Roehe AV, Moreno M, et al. Segmentation of masses on mammograms using data augmentation and deep learning. J Digit Imaging 2020;33(4):858-68.
- [39] Hossain MS. Microc alcification segmentation using modified U-net segmentation network from mammogram images. J King Saud Univ – Comput Inf Sci 2022;34 (2):86-94.
- [40] Jen C-C, Yu S-S. Automatic detection of abnormal mammograms in mammographic images. Expert Syst Appl 2015;42(6):3048-55.
- [41] Yurdusev AA, Adem K, Hekim M. Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model. Biomed Signal Process Control 2023;80:104360.
- [42] Jabeen K, Khan MA, Balili J, Alhaisoni M, Almujally NA, Alrashidi H, et al. BC(2) NetRF: Breast cancer classification from mammogram images using enhanced deep learning features and equilibrium-jaya controlled regula falsi-based features selection. Diagnostics 2023;13(7).
- [43] Nagalakshmi K, Suriya SD. Performance analysis of breast cancer detection method using ANFIS classification approach. Comput Syst Sci Eng 2023;44(1): 501-17.
- [44] Babu A, Jerome SA. Automatic breast cancer detection using HGMMEM algorithm with DELMA classification. Multimedia Tools Appl.
- [45] Pramanik S, Banik D, Bhattacharjee D, Nasipuri M, Bhowmik MK, Majumdar G. Suspicious-region segmentation from breast thermogram using DLPE-based level set method. IEEE Trans Med Imaging 2019;38(2):572-84.
- [46] Pramanik S, Bhattacharjee D, Nasipuri M. MSPSF: A multi-scale local intensity measurement function for segmentation of breast thermogram. IEEE Trans Instrum Meas 2020;69(6):2722-33.
- [47] Sánchez-Ruiz D, Olmos-Pineda I, Olvera-López JA. Automatic region of interest segmentation for breast thermogram image classification. Pattern Recogn Lett 2020;135:72-81.
- [48] da Queiroz KFFC, de Queiroz Júnior JRA, Dourado H, de Lima RCF. Automatic segmentation of region of interest for breast thermographic image classification. Research on. Biomed Eng 2023;39(1):199-208.
- [49] Xie J, Song XS, Zhang W, Dong Q, Wang Y, Li FH, et al. A novel approach with dual-sampling convolutional neural network for ultrasound image classification of breast tumors. Phys Med Biol 2020;65(24).
- [50] Eroglu Y, Yildirim M, Cinar A. Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR. Comput Biol Med 2021;133.
- [51] Zhuang ZM, Yang ZBA, Raj ANJ, Wei CL, Jin PC, Zhuang SX. Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion. Comput Methods Programs Biomed 2021;208.
- [52] Ragab M, Albukhari A, Alyami J, Mansour RF. Ensemble deep-learning-enabled clinical decision support system for breast cancer diagnosis and classification on ultrasound images. Biology-Basel 2022;11(3).
- [53] Chen H, Ma ML, Liu G, Wang Y, Jin ZH, Liu C. Breast tumor classification in ultrasound images by fusion of deep convolutional neural network and shallow LBP feature. J Digital Imaging.
- [54] Jadoon MM, Zhang Q, Haq IU, Butt S, Jadoon A. Three-class mammogram classification based on descriptive CNN features. Biomed Res Int 2017;2017: 3640901.
- [55] Ghasemzadeh A, Sarbazi Azad S, Esmaeili E. Breast cancer detection based on Gabor-wavelet transform and machine learning methods. Int J Mach Learn Cybern 2019;10(7):1603-12.
- [56] Mehmood M, Ayub E, Ahmad F, Alruwaili M, Alrowaili ZA, Alanazi S, et al. Machine Learning Enabled Early Detection of Breast Cancer by Structural Analysis of Mammograms. CMC – Comput Mater Continua 2021;67(1):641-57.
- [57] Nomani A, Ansari Y, Nasirpour MH, Masoumian A, Pour ES, Valizadeh A. PSOWNNs-CNN: A computational radiology for breast cancer diagnosis improvement based on image processing using machine learning methods. Comput Intell Neurosci 2022;2022.
- [58] Faust O, Acharya UR, Meiburger KM, Molinari F, Koh JEW, Yeong CH, et al. Comparative assessment of texture features for the identification of cancer in ultrasound images: a review. Biocybernet Biomed Eng 2018;38(2):275-96.
- [59] Pawar SD, Sharma KK, Sapate SG, Yadav GY. Segmentation of pectoral muscle from digital mammograms with depth-first search algorithm towards breast density classification. Biocybernet Biomed Eng 2021;41(3):1224-41.
- [60] Alhussan AA, Abdelhamid AA, Towfek SK, Ibrahim A, Abualigah L, Khodadadi N, et al. Classification of breast cancer using transfer learning and advanced AlBiruni earth radius optimization. Biomimetics 2023;8(3).
- [61] Ranjbarzadeh R, Jafarzadeh Ghoushchi S, Tataei Sarshar N, Tirkolaee EB, Ali SS, Kumar T, et al. ME-CCNN: Multi-encoded images and a cascade convolutional neural network for breast tumor segmentation and recognition. Artif Intell Rev 2023.
- [62] Gerbasi A, Clementi G, Corsi F, Albasini S, Malovini A, Quaglini S, et al. DeepMiCa: Automatic segmentation and classification of breast MIcroCAlcifications from mammograms. Comput Methods Programs Biomed 2023;235.
- [63] Zamir R, Bagon S, Samocha D, Yagil Y, Basri R, Sklair-Levy M, et al. Segmenting microcalcifications in mammograms and its applications. Proc. progress in biomedical optics and imaging – Proceedings of SPIE. 2021.
- [64] Mishra V, Singh Y, Rath SK. Breast Cancer detection from Thermograms Using Feature Extraction and Machine Learning Techniques. Proc. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). 2019.
- [65] Sathish D, Kamath S, Prasad K, Kadavigere R. Role of normalization of breast thermogram images and automatic classification of breast cancer. Visual Comput 2019;35(1):57-70.
- [66] Karthiga R, Narasimhan K. Medical imaging technique using curvelet transform and machine learning for the automated diagnosis of breast cancer from thermal image. Pattern Anal Appl 2021;24(3):981-91.
- [67] Zarei M, Rezai A, Hamidpour SSF. Breast cancer segmentation based on modified Gaussian mean shift algorithm for infrared thermal images. Comput Methods Biomech Biomed Eng-Imaging Visualiz 2021;9(6):574-80.
- [68] Macedo M, Santana M, dos Santos WP, Menezes R, Bastos-Filho C. Breast cancer diagnosis using thermal image analysis: A data-driven approach based on swarm intelligence and supervised learning for optimized feature selection. Appl Soft Comput 2021;109:107533.
- [69] Houssein EH, Emam MM, Ali AA. An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Syst Appl 2021;185.
- [70] Gupta KK, Vijay R, Pahadiya P, Saxena S. Use of novel thermography features of extraction and different artificial neural network algorithms in breast cancer screening. Wirel Pers Commun 2022;123(1):495-524.
- [71] Gupta KK, Pahadiya P, Saxena S, Gupta M. Novel feature selection using machine learning algorithm for breast cancer screening of thermography images. Wirel Pers Commun 2023;131(3):1929-56.
- [72] Pramanik R, Pramanik P, Sarkar R. Breast cancer detection in thermograms using a hybrid of GA and GWO based deep feature selection method. Expert Syst Appl 2023;219:119643.
- [73] May RM. Simple mathematical models with very complicated dynamics. Nature 1976;261(5560):459-67.
- [74] Fang L, Pan X, Yao Y, Zhang L, Guo D. A hybrid active contour model for ultrasound image segmentation. Soft Comput 2020;24(24):18611-25.
- [75] Qu XL, Shi Y, Hou YX, Jiang J. An attention-supervised full-resolution residual network for the segmentation of breast ultrasound images. Med Phys 2020;47 (11):5702-14.
- [76] Byra M, Jarosik P, Szubert A, Galperin M, Ojeda-Fournier H, Olson L, et al. Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomed Signal Process Control 2020;61.
- [77] Ilesanmi AE, Chaumrattanakul U, Makhanov SS. A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning. Biocybernet Biomed Eng 2021;41(2):802-18.
- [78] Xue C, Zhu L, Fu HZ, Hu XW, Li XM, Zhang H, et al. Global guidance network for breast lesion segmentation in ultrasound images. Med Image Anal 2021;70.
- [79] Pan P, Chen H, Li Y, Cai N, Cheng L, Wang S. Tumor segmentation in automated whole breast ultrasound using bidirectional LSTM neural network and attention mechanism. Ultrasonics 2021;110:106271.
- [80] Zhou Y, Chen HJ, Li YF, Wang S, Cheng L, Li JP. 3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network. Expert Syst Appl 2021;168.
- [81] Lyu Y, Xu YH, Jiang X, Liu JN, Zhao XY, Zhu XJ. AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features. Biomed Signal Process Control 2023;81.
- [82] Yang H, Yang D. CSwin-PNet: A CNN-Swin Transformer combined pyramid network for breast lesion segmentation in ultrasound images. Expert Syst Appl 2023;213:119024.
- [83] Ma WJ, Zhao YM, Ji Y, Guo XP, Jian XQ, Liu PF, et al. Breast cancer molecular subtype prediction by mammographic radiomic features. Acad Radiol 2019;26 (2):196-201.
- [84] Muduli D, Dash R, Majhi B. Automated breast cancer detection in digital mammograms: A moth flame optimization based ELM approach. Biomed Signal Process Control 2020;59.
- [85] Sha ZJ, Hu L, Rouyendegh BD. Deep learning and optimization algorithms for automatic breast cancer detection. Int J Imaging Syst Technol 2020;30(2): 495-506.
- [86] Elmoufidi A. Deep multiple instance learning for automatic breast cancer assessment using digital mammography. IEEE Trans Instrum Meas 2022;71:1-13.
- [87] Elkorany AS, Elsharkawy ZF. Efficient breast cancer mammograms diagnosis using three deep neural networks and term variance. Sci Rep 2023;13(1):2663.
- [88] Resmini R, Silva L, Araujo AS, Medeiros P, Muchaluat-Saade D, Conci A. Combining genetic algorithms and SVM for breast cancer diagnosis using infrared thermography. Sensors 2021;21(14).
- [89] Resmini R, da Silva LF, Medeiros PRT, Araujo AS, Muchaluat-Saade DC, Conci A. A hybrid methodology for breast screening and cancer diagnosis using thermography. Comput Biol Med 2021;135.
- [90] Aidossov N, Zarikas V, Zhao Y, Mashekova A, Ng EYK, Mukhmetov O, et al. An integrated intelligent system for breast cancer detection at early stages using IR images and machine learning methods with explainability. SN Comput Sci 2023;4 (2):184.
- [91] Huo L, Tan Y, Wang S, Geng CZ, Li Y, Ma XJ, et al. Machine learning models to improve the differentiation between benign and malignant breast lesions on ultrasound: a multicenter external validation study. Cancer Manage Res 2021;13: 3367-79.
- [92] Mishra AK, Roy P, Bandyopadhyay S, Das SK. Breast ultrasound tumour classification: A Machine Learning-Radiomics based approach. Expert Syst 2021; 38(7).
- [93] Zhuang ZM, Yang ZB, Zhuang SX, Raj ANJ, Yuan Y, Nersisson R. Multi-features-based automated breast tumor diagnosis using ultrasound image and support vector machine. Comput Intell Neurosci 2021;2021.
- [94] Homayoun H, Chan WY, Kuzan TY, Leong WL, Altintoprak KM, Mohammadi A, et al. Applications of machine-learning algorithms for prediction of benign and malignant breast lesions using ultrasound radiomics signatures: A multi-center study. Biocybernet Biomed Eng 2022;42(3):921-33.
- [95] He KM, Zhang XY, Ren SQ, Sun J, Ieee. Deep residual learning for image recognition. In: Proc. 2016 IEEE conference on computer vision and pattern recognition (CVPR); 2016.
- [96] Ting FF, Tan YJ, Sim KS. Convolutional neural network improvement for breast cancer classification. Expert Syst Appl 2019;120:103-15.
- [97] Sun L, Wang J, Hu Z, Xu Y, Cui Z. Multi-view convolutional neural networks for mammographic image classification. IEEE Access 2019;7:126273-82.
- [98] Gnanasekaran VS, Joypaul S, Meenakshi Sundaram P, Chairman DD. Deep learning algorithm for breast masses classification in mammograms. IET Image Proc 2020;14(12):2860-8.
- [99] El Houby EMF, Yassin NIR. Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks. Biomed Signal Process Control 2021;70:102954.
- [100] Patil RS, Biradar N. Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network. Evol Intel 2021;14(4):1459-74.
- [101] AlGhamdi M, Abdel-Mottaleb M. DV-DCNN: Dual-view deep convolutional neural network for matching detected masses in mammograms. Comput Methods Programs Biomed 2021;207:106152.
- [102] Rajakumari R, Kalaivani L. Breast cancer detection and classification using deep CNN techniques. Intell Autom Soft Comput 2022;32(2).
- [103] Muduli D, Dash R, Majhi B. Automated diagnosis of breast cancer using multimodal datasets: A deep convolution neural network based approach. Biomed Signal Process Control 2022;71.
- [104] Maqsood S, Damasevicius R, Maskeliunas R. TTCNN: A breast cancer detection and classification towards computer-aided diagnosis using digital mammography in early stages. Appl Sci-Basel 2022;12(7).
- [105] Mohiyuddin A, Basharat A, Ghani U, Peter V, Abbas S, Naeem OB, et al. Breast tumor detection and classification in mammogram images using modified YOLOv5 network. Comput Math Methods Med 2022;2022:1359019.
- [106] Kulkarni S, Rabidas R. Fully convolutional network for automated detection and diagnosis of mammographic masses. Multimedia Tools Appl 2023.
- [107] Aslan MF. A hybrid end-to-end learning approach for breast cancer diagnosis: convolutional recurrent network. Comput Electr Eng 2023;105:108562.
- [108] Fernandez-Ovies FJ, Alferez-Baquero ES, de Andres-Galiana EJ, Cernea A, Fernandez-Muniz Z, Fernandez-Martinez JL. Detection of Breast Cancer Using Infrared Thermography and Deep Neural Networks. Bioinformatics and Biomedical Engineering (IWBBIO 2019), PT II; 2019. p. 514-23.
- [109] Sanchez-Cauce R, Perez-Martin J, Luque M. Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data. Comput Methods Programs Biomed 2021;204.
- [110] Gonçalves CB, Souza JR, Fernandes H. CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images. Comput Biol Med 2022;142:105205.
- [111] Mohamed EA, Gaber T, Karam O, Rashed EA. A Novel CNN pooling layer for breast cancer segmentation and classification from thermograms. PLoS One 2022; 17(10).
- [112] Mammoottil MJ, Kulangara LJ, Cherian AS, Mohandas P, Hasikin K, Mahmud M. Detection of breast cancer from five-view thermal images using convolutional neural networks. J Healthc Eng 2022;2022.
- [113] Mahoro E, Akhloufi MA. Breast cancer classification on thermograms using deep CNN and transformers. Quantitat Infrared Thermogr J.
- [114] Mohamed EA, Rashed EA, Gaber T, Karam O. Deep learning model for fully automated breast cancer detection system from thermograms. PLoS One 2022;17 (1).
- [115] Wishart GC, Campisi M, Boswell M, Chapman D, Shackleton V, Iddles S, et al. The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. EJSO 2010;36(6):535-40.
- [116] Al Husaini MAS, Habaebi MH, Gunawan TS, Islam MR, Elsheikh EAA, Suliman FM. Thermal-based early breast cancer detection using inception V3, inception V4 and modified inception MV4. Neural Comput Appl 2022;34(1): 333-48.
- [117] Civilibal S, Cevik KK, Bozkurt A. A deep learning approach for automatic detection, segmentation and classification of breast lesions from thermal images. Expert Syst Appl 2023;212:118774.
- [118] Ma H, Tian RH, Li H, Sun H, Lu GX, Liu RB, et al. Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images. Biomed Eng Online 2021;20(1).
- [119] Luo YZ, Huang QH, Li XL. Segmentation information with attention integration for classification of breast tumor in ultrasound image. Pattern Recogn 2022:124.
- [120] Li YJ, Gu H, Wang HY, Qin P, Wang J. BUSnet: A deep learning model of breast tumor lesion detection for ultrasound images. Front Oncol 2022:12.
- [121] Jabeen K, Khan MA, Alhaisoni M, Tariq U, Zhang YD, Hamza A, et al. Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 2022;22(3).
- [122] Karthik R, Menaka R, Kathiresan GS, Anirudh M, Nagharjun M. Gaussian dropout based stacked ensemble CNN for classification of breast tumor in ultrasound images. IRBM 2022;43(6):715-33.
- [123] Hejduk P, Marcon M, Unkelbach J, Ciritsis A, Rossi C, Borkowski K, et al. Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network. Eur Radiol 2022;32(7):4868-78.
- [124] Qu XL, Lu HY, Tang WZ, Wang S, Zheng DZ, Hou YX, et al. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images. Med Phys 2022;49(9):5787-98.
- [125] Wang QC, Chen H, Luo GN, Li B, Shang HT, Shao H, et al. Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. Eur Radiol 2022;32(10):7163-72.
- [126] Podda AS, Balia R, Barra S, Carta S, Fenu G, Piano L. Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images. J Comput Sci 2022:63.
- [127] Kumar S, Parthasarathi P, Hogo MA, Masud M, Al-Amri JF, Abouhawwash M. Breast cancer detection using Breastnet-18 augmentation with fine tuned Vgg-16. Intell Autom Soft Comput 2023;36(2):2363-78.
- [128] Zhong SZ, Tu C, Dong XY, Feng QJ, Chen WF, Zhang Y. MsGoF: Breast lesion classification on ultrasound images by multi-scale gradational-order fusion framework. Comput Methods Programs Biomed 2023;230.
- [129] Pan SJ, Yang QA. A survey on transfer learning. IEEE Trans Knowl Data Eng 2010; 22(10):1345-59.
- [130] Zhuang F, Luo P, He Q, Shi Z. Survey on transfer learning research. J Softw 2015; 26(1):26-39.
- [131] Kora P, Ooi CP, Faust O, Raghavendra U, Gudigar A, Chan WY, et al. Transfer learning techniques for medical image analysis: A review. Biocybernet Biomed Eng 2022;42(1):79-107.
- [132] Chougrad H, Zouaki H, Alheyane O. Deep convolutional neural networks for breast cancer screening. Comput Methods Programs Biomed 2018;157:19-30.
- [133] Hassan SA, Sayed MS, Abdalla MI, Rashwan MA. Breast cancer masses classification using deep convolutional neural networks and transfer learning. Multimedia Tools Appl 2020;79(41-42):30735-68.
- [134] Salama WM, Aly MH. Deep learning in mammography images segmentation and classification: Automated CNN approach. Alex Eng J 2021;60(5):4701-9.
- [135] Mahmoud HAH, Alharbi AH, Khafga DS. Breast cancer classification using deep convolution neural network with transfer learning. Intell Autom Soft Comput 2021;29(3).
- [136] Mokni R, Haoues M. CADNet157 model: fine-tuned ResNet152 model for breast cancer diagnosis from mammography images. Neural Comput Appl 2022;34(24): 22023-46.
- [137] Prusty S, Dash SK, Patnaik S. A novel transfer learning technique for detecting breast cancer mammograms using VGG16 bottleneck feature. ECS Trans 2022; 107(1):733.
- [138] Malibari AA, Obayya M, Nour MK, Mehanna AS, Hamza MA, Zamani A, et al. Gaussian optimized deep learning-based belief classification model for breast cancer detection. CMC – Comput Mater Continua 2022;73(2):4123-38.
- [139] Ayana G, Dese K, Dereje Y, Kebede Y, Barki H, Amdissa D, et al. Vision-transformer-based transfer learning for mammogram classification. Diagnostics 2023;13(2).
- [140] Das HS, Das A, Neog A, Mallik S, Bora K, Zhao ZM. Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach. Front Genet 2023:13.
- [141] Boudouh SS, Bouakkaz M, Ieee. Breast cancer: breast tumor detection using deep transfer learning techniques in mammogram images. In: Proceeding of the 2nd 2022 international conference on computer science and software engineering (CSASE 2022); 2022.
- [142] Tiwari D, Dixit M, Gupta K. Deep multi-view breast cancer detection: a multi-view concatenated infrared thermal images based breast cancer detection system using deep transfer learning. Traitement DU Signal 2021;38(6):1699-711.
- [143] Torres-Galvan JC, Guevara E, Kolosovas-Machuca ES, Oceguera-Villanueva A, Flores JL, Gonzalez FJ. Deep convolutional neural networks for classifying breast cancer using infrared thermography. Quantit Infrared Thermogr J 2022;19(4): 283-94.
- [144] Dey S, Roychoudhury R, Malakar S, Sarkar R. Screening of breast cancer from thermogram images by edge detection aided deep transfer learning model. Multimedia Tools Appl 2022;81(7):9331-49.
- [145] Ensafi M, Keyvanpour MR, Shojaedini SV. A New method for promote the performance of deep learning paradigm in diagnosing breast cancer: improving role of fusing multiple views of thermography images. Heal Technol 2022;12(6): 1097-107.
- [146] Tsietso D, Yahya A, Samikannu R, Tariq MU, Babar M, Qureshi B, et al. Multiinput deep learning approach for breast cancer screening using thermal infrared imaging and clinical data. IEEE Access 2023;11:52101-16.
- [147] Byra M, Galperin M, Ojeda-Fournier H, Olson L, O’Boyle M, Comstock C, et al. Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion. Med Phys 2019;46(2): 746-55.
- [148] Wang Y, Choi EJ, Choi Y, Zhang H, Jin GY, Ko SB. Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning. Ultrasound Med Biol 2020;46(5):1119-32.
- [149] Byra M. Breast mass classification with transfer learning based on scaling of deep representations. Biomed Signal Process Control 2021;69.
- [150] Althobaiti MM, Ashour AA, Alhindi NA, Althobaiti A, Mansour RF, Gupta D, et al. Deep transfer learning-based breast cancer detection and classification model using photoacoustic multimodal images. Biomed Res Int 2022;2022.
- [151] Masud M, Eldin Rashed AE, Hossain MS. Convolutional neural network-based models for diagnosis of breast cancer. Neural Comput Appl 2022;34(14): 11383-94.
- [152] Valentini G, Masulli R. Ensembles of learning machines. Neural NETS; 2002 [chapter 13th Italian Workshop on Neural Nets (WIRN VIETRI 2002)].
- [153] Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput 2019;35(3):967-84.
- [154] Guclu D, Dursun S. Artificial neural network modelling of a large-scale wastewater treatment plant operation. Bioprocess Biosyst Eng 2010;33(9): 1051-8.
- [155] Dhungel N, Carneiro G, Bradley AP. A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 2017; 37:114-28.
- [156] Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep learning to improve breast cancer detection on screening mammography. Sci Rep 2019;9 (1):12495.
- [157] Sun H, Li C, Liu BQ, Liu ZY, Wang MY, Zheng HR, et al. AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms. Phys Med Biol 2020;65(5).
- [158] Thawkar S. Feature selection and classification in mammography using hybrid crow search algorithm with Harris hawks optimization. Biocybernet Biomed Eng 2022;42(4):1094-111.
- [159] Oza P, Sharma P, Patel S. Deep ensemble transfer learning-based framework for mammographic image classification. J Supercomput.
- [160] Macedo M, Santana M, dos Santos WP, Menezes R, Bastos C. Breast cancer diagnosis using thermal image analysis: A data-driven approach based on swarm intelligence and supervised learning for optimized feature selection. Appl Soft Comput 2021;109.
- [161] Rautela K, Kumar D, Kumar V. Dual-modality synthetic mammogram construction for breast lesion detection using U-DARTS. Biocybernet Biomed Eng 2022;42(3):1041-50.
- [162] Tiwari D, Dixit M, Gupta K. Breast cancer-caps: a breast cancer screening system based on capsule network utilizing the multiview breast thermal infrared images. Turk J Electr Eng Comput Sci 2022;30(5):1804.
- [163] Kim J, Kim HJ, Kim C, Lee JH, Kim KW, Park YM, et al. Weakly-supervised deep learning for ultrasound diagnosis of breast cancer. Sci Rep 2021;11(1).
- [164] Gao YH, Liu B, Zhu Y, Chen L, Tan M, Xiao XZ, et al. Detection and recognition of ultrasound breast nodules based on semi-supervised deep learning: a powerful alternative strategy. Quantit Imaging Med Surg 2021;11(6):2265-78.
- [165] Deb SD, Jha RK. Breast UltraSound Image classification using fuzzy-rank-based ensemble network. Biomed Signal Process Control 2023;85:104871.
- [166] Gilbert FJ, Pinker-Domenig K. Diagnosis and staging of breast cancer: when and how to use mammography, tomosynthesis, ultrasound, contrast-enhanced mammography, and magnetic resonance imaging. diseases of the chest, breast, heart and vessels 2019-2022: diagnostic and interventional imaging. Cham: Springer International Publishing; 2019 [chapter].
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f1a49d6-a142-4fa3-912a-fc452a89a7c5