PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of an unmanned aerial vehicle to acquire data to develop inland electronic navigational charts: The case of a bridge and the navigation infrastructure located on it

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unmanned aerial vehicle (UAV) technologies are becoming increasingly common, with ever-expanding applications. Low-altitude imaging makes it possible to quickly acquire high-resolution data for various objects, especially for mapping. This paper presents the mapping of a bridge and its notice marks, lights, and span to produce electronic navigation charts for inland navigation. The research object was the Clowy Bridge on the Regalica River in Szczecin, Poland. In order to carry out the research, two photogrammetric flights were made, and three sets of photos were created, from which orthophotos were developed. The research included the analysis of the orthophoto generation process, as well as quantitative and qualitative analyses. The results of the research demonstrated the possibility of using this type of data for mapping bridges to create electronic navigation maps for inland navigation.
Słowa kluczowe
EN
UAV   mapping   IENC   chart   navigation   bridge   shipping   inland  
Rocznik
Strony
119--127
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin, Chair of Geoinformatics 46 Żołnierska St., 71-210 Szczecin, Poland
Bibliografia
  • 1. Angnuureng, D.B, Jayson-Quashigah, P.-N, Almar, R, Stieglitz, T.C, Anthony, E.J, Aheto, D.W & Addo, K.A. (2020) Application of Shore-based Video and Unmanned Aerial Vehicles (Drones): Complementary Tools for Beach Studies. Remote Sensing 12(3), 394, doi: 10.3390/ rs12030394.
  • 2. Casella, E., Drechsel, J., Winter, C., Benninghoff, M. & Rovere, A. (2020) Accuracy of Sand Beach Topography Surveying by Drones and Photogrammetry. Geo-Marine Letters 40, pp. 255–268, doi: 10.1007/s00367-020-00638-8.
  • 3. Contreras-De-Villar, F., García, F.J., Muñoz-Perez, J.J., Contreras-De-Villar, A., Ruiz-Ortiz, V., Lopez, P., Garcia-López, S. & Jigena, B. (2021) Beach Leveling Using a Remotely Piloted Aircraft System (RPAS): Problems and Solutions. Journal of Marine Science and Engineering 9(1), 19, doi: 10.3390/jmse9010019.
  • 4. Burdziakowski, P. (2021) Polymodal Method of Improving the Quality of Photogrammetric Images and Models. Energies 14(12), 3457, doi: 10.3390/en14123457.
  • 5. Burdziakowski, P., Specht, C., Dabrowski, P.S., Specht, M., Lewicka, O. & Makar, A. (2020) Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors 20(14), 4000, doi: 10.3390/s20144000.
  • 6. Chen, W.F. & Duan, L. (Eds.) (2003) Bridge Engineering: Substructure Design. 1st Edition. CRC Press, doi: 10.1201/9780203009079.
  • 7. Escobar-Wolf, R., Oommen, T., Brooks, C.N., Dobson, R.J. & Ahlborn, T.M. (2018) Unmanned Aerial Vehicle (UAV)-Based Assessment of Concrete Bridge Deck Delamination Using Thermal and Visible Camera Sensors: A Preliminary Analysis. Research in Nondestructive Evaluation 29, 4, pp. 183–198, doi: 10.1080/09349847.2017.1304597.
  • 8. Ikeda, T., Yasui, S., Minamiyama, S., Ohara, K., Ashizawa, S., Ichikawa, A., Okino, A., Oomichi, T. & Fukuda, T. (2018) Stable impact and contact force control by UAV for inspection of floor slab of bridge. Advanced Robotics 32(19), pp. 1061–1076, doi: 10.1080/01691864.2018.1525075.
  • 9. Jung, S., Song, S., Kim, S., Park, J., Her, J., Roh, K. & Myung, H. (2019) Toward Autonomous Bridge Inspection: A framework and experimental results. 16th International Conference on Ubiquitous Robots (UR), pp. 208–211, doi: 10.1109/URAI.2019.8768677.
  • 10. Kedzierski, M., Wierzbicki, D., Sekrecka, A., Fryskowska, A., Walczykowski, P. & Siewert, J. (2019) Influence of Lower Atmosphere on the Radiometric Quality of Unmanned Aerial Vehicle Imagery. Remote Sensing 11(10), 1214, doi: 10.3390/rs11101214.
  • 11. Khaloo, A., Lattanzi, D., Cunningham, K., Dell’andrea, R. & Riley, M. (2018) Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling, Structure and Infrastructure Engineering 14(1), pp. 124–136, doi: 10.1080/15732479.2017.1330891.
  • 12. Kim, I.-H., Jeon, H., Baek, S.-C., Hong, W.-H. & Jung, H.-J. (2018) Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle. Sensors 18(6), 1881, doi: 10.3390/ s18061881.
  • 13. Knott, M. & Winters, M. (2018) Ship and barge collisions with bridges over navigable waterways. PIANC – World Congress, Panama City, Panama.
  • 14. Koeva, M., Muneza, J.M., Gevaert, C., Gerke, M. & Nex, F. (2018) Using UAVs for map creation and updating. A case study in Rwanda. Survey Review 50(361), pp. 312–325, doi: 10.1080/00396265.2016.1268756.
  • 15. Kujawski, A., Jerzyło, P. & Rekowska, P. (2018) Shipping Safety Management on Polish Inland Waterways. Archives of Transport System Telematics 11, 4, pp. 18–22.
  • 16. Lizarazo, I., Angulo Morales, V. & Rodríguez Galvis, J. (2017) Automatic mapping of land surface elevation changes from UAV-based imagery. International Journal of Remote Sensing 38(1), pp. 2603–2622, doi: 10.1080/01431161.2016.1278313.
  • 17. Lopatin, E. & Lopatina, A. (2017) Assessing and mapping energy biomass distribution using a UAV in Finland. Biofuels 8(4), pp. 485–499, doi: 10.1080/17597269.2017.1302663.
  • 18. Lowe, M.K., Adnan, F.A.F., Hamylton, S.M., Carvalho, R.C. & Woodroffe, C.D. (2019) Assessing Reef-island Shoreline Change Using UAV-derived Orthomosaics and Digital Surface Models. Drones 3(2), 44, doi: 10.3390/ drones3020044.
  • 19. Łubczonek, J., Łącka, M. & Zaniewicz, G. (2019) Analysis of the accuracy of shoreline mapping in inland navigational charts (Inland ENC) using photogrammetric and sonar images. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 58(130), pp. 45–54, http://dx.doi.org/10.17402/335.
  • 20. Łubczonek, J. (2017) The use of terrestrial laser scanning for mapping bridges on electronic navigational charts. Annals of Geomatics XV, 2(77), pp. 217–232.
  • 21. Mac, V.H., Tran, Q.H., Huh, J., Doan, N.S., Kang, C. & Han, D. (2019) Detection of Delamination with Various Width-to-depth Ratios in Concrete Bridge Deck Using Passive IRT: Limits and Applicability. Materials (Basel, Switzerland) 12(23), 3996, doi: 10.3390/ma12233996.
  • 22. Mousavi, V., Varshosaz, M. & Remondino, F. (2021) Using Information Content to Select Keypoints for UAV Image Matching. Remote Sensing 13(7), 1302, doi: 10.3390/ s18061881.
  • 23. Tsukada, F., Shimozono, T. & Matsuba, Y. (2020) UAVbased mapping of nearshore bathymetry over broad areas. Coastal Engineering Journal 62, 2, pp. 285–298, doi: 10.1080/21664250.2020.1747766.
  • 24. Verdie, Y., Yi, K.M., Fua, P. & Lepetit, V. (2015) TILDE: A Temporally Invariant Learned DEtector. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston.
  • 25. Wang, Z., Fan, B. & Wu, F. (2013) FRIF: Fast Robust Invariant Feature. In Proceedings of the BMVC, Bristol, UK.
  • 26. Xue, W., Zhang, Z. & Chen, S. (2021) Ghost Elimination via Multi-Component Collaboration for Unmanned Aerial Vehicle Remote Sensing Image Stitching. Remote Sensing, doi: 10.3390/rs13071388.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f19ad6f-e377-4f80-8da8-09d80893a4d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.