PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The magnitude optimum design of the PI controller for plants with complex roots and dead time

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analytical design of the PID-type controllers for linear plants based on the magnitude optimum criterion usually results in very good control quality and can be applied directly for high-order linear models with dead time, without need of any model reduction. This paper brings an analysis of properties of this tuning method in the case of the PI controller, which shows that it guarantees closed-loop stability and a large stability margin for stable linear plants without zeros, although there are limitations in the case of oscillating plants. In spite of the fact that the magnitude optimum criterion prescribes the closed-loop response only for low frequencies and the stability margin requirements are not explicitly included in the design objective, it reveals that proper open-loop behavior in the middle and high frequency ranges, decisive for the closed-loop stability and robustness, is ensured automatically for the considered class of linear systems if all damping ratios corresponding to poles of the plant transfer function without the dead-time term are sufficiently high.
Rocznik
Strony
5--35
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wzory
Twórcy
autor
  • University of Pardubice, Faculty of Electrical Engineering and Informatics, Studentska 95, 532 10 Pardubice, Czech Republic
Bibliografia
  • [1] K.J. Åström and T. Hägglund: PID Controllers: Theory, Design, and Tuning. 2nd edition. Instrument Society of America, 1995.
  • [2] T.K. Kiong, W. Quing-Guo, H.Ch. Chiech, and T.J. Hagglund: Advances in PID Control. Springer-Verlag, 1999.
  • [3] J.G. Ziegler and N.B. Nichols: Optimum settings for automatic controllers. Transactions of the ASME, 64, (1942), 759-768.
  • [4] K.L. Chien, J.A. Hrones, and J.B. Reswick: On the automatic control of generalised passive systems. Transactions of the ASME, 52, (1952), 175-185.
  • [5] G.H. Cohen and G.A. Coon: Theoretical consideration of retarded control.Transactions of the ASME, 75, (1953), 827-834.
  • [6] L. Trybus: A set of PID tuning rules. Archives of Control Sciences, 15(1), (2005), 5-17.
  • [7] S. Skogestad: Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 13(4), (2003), 291-309. DOI: 10.1016/S0959-1524(02)00062-8.
  • [8] D. Graham and R.C. Lathrop: The synthesis of 'optimum' transient response: Criteria and standard forms. Transactions AIEE, 72, (1953), 273-288.
  • [9] K.J. Åström, H. Panagopoulos, and T. Hägglund: Design of PI Controllers based on Non-Convex Optimization. Automatica, 34(5), (1998), 585-601. DOI: 10.1016/S0005-1098(98)00011-9.
  • [10] K.J. Åström and T. Hägglund: Revisiting the Ziegler-Nichols step response method for PID control. Journal of Process Control, 14(6), (2004), 635-650. DOI: 10.1016/j.jprocont.2004.01.002.
  • [11] R.C. Oldenbourg and H. Sartorius: A uniform approach to the optimum adjustments of control loops. Transactions of the ASME, 76, (1954), 1265-1279.
  • [12] D. Vrančič, Y. Peng, and S. Strmčnik: A new PID controller tuning method based on multiple integrations. Control Engineering Practice, 7(5), (1999), 623-633. DOI: 10.1016/S0967-0661(98)00198-1.
  • [13] D. Vrančič, S. Strmčnik, and D. Juričič: A magnitude optimum multiple integration tuning method for filtered PID controller. Automatica, 37(9), (2001), 1473-1479. DOI: 10.1016/S0005-1098(01)00088-7.
  • [14] K.G. Papadopoulos: PID Controller Tuning Using the Magnitude Optimum Criterion. Springer, 2015. DOI: 10.1007/978-3-319-07263-0.
  • [15] J. Cvejn: The design of PID controller for non-oscillating time-delayed plants with guaranteed stability margin based on the modulus optimum criterion. Journal of Process Control, 23(4), (2013), 570-584, DOI: 10.1016/j.jprocont.2013.01.008.
  • [16] J. Cvejn: PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion. Archives of Control Sciences, 26(1), (2016), 5-17. DOI: 10.1515/acsc-2016-0001.
  • [17] D. Vrančič, S. Strmčnik, and J. Kocijan: Improving disturbance rejection of PI controllers by means of the magnitude optimum method. ISA Transactions, 43(1), (2004), 73-84. DOI: 10.1016/S0019-0578(07)60021-4.
  • [18] D. Vrančič, S. Strmčnik, J. Kocijan, and P.M. Oliviera: Improving disturbance rejection of PID controllers by means of the magnitude optimum method. ISA Transactions, 49(1), (2010), 47-56. DOI: 10.1016/j.isalra.2009.08.002.
  • [19] J. Fişer, P. Zítek, and T. Vyhlídal.: Magnitude Optimum Design of PID Control Loop with Delay. IFAC-PapersOnLine, 48(12), (2015), 446-451. DOI: 10.1016/j.ifacol.2015.09.419.
  • [20] J. Cvejn and D. Vrančič: The magnitude optimum tuning of the PID controller: Improving load disturbance rejection by extending the controller. Transactions of the Institute of Measurement and Control, 40(5), (2018), 1669-1680. DOI: 10.1177/0142331216688749.
  • [21] J. Cvejn: Enhancing disturbance rejection performance for the magnitude-optimum-tuned PI controller. 2017 21st International Conference on Process Control (PC) Štrbské Pleso, Slovakia. (2017), 155-160. DOI: 10.1109/PC.2017.7976206.
  • [22] R. Hanus: Determination of controllers parameters in the frequency domain. Journal A, 16, (1975), 128-132.
  • [23] J.L. Douce, W.D. Widanage, and K.R. Godfrey: Evaluation of the relationship between gain and phase using extrapolation techniques. IET Control Theory & Applications, 1(4), (2007), 1122-1130. DOT: 10.1049/ietcta:20060333.
  • [24] T. Hägglund and K.J. Åström: Revisiting the Ziegler-Nichols step response method for PI control - Part II The Frequency Response Method. Asian Journal of control, 6(4), (2004), 469-182. DOI: 10.1111/j.1934-6093.2004.tb00368.x.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f167c94-f721-4f1b-9a3f-6f31e6261472
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.