PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and modelling analysis of the separation of ionic salts solution in nanofiltration process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the possibility of the use of Donnan and Steric Partitioning Pore Model (DSPM) based on the extended Nernst-Planck equation for interpretation of the separation of chromium(III) and chloride ions from concentrated salt solution in nanofiltration process. Results of predictions obtained with the analyzed model showed the significant effect of the pore dielectric constant on separation of chromium(III) and chloride ions from concentrated salt solution on nanofiltration membranes. It was found that the increase of pore dielectric constant caused the decrease of chromium(III) and chloride ions separation. Additionally, the satisfactory agreement between experimental and predicted data was stated. The Donnan and Steric Partitioning Pore Model may be helpful for the monitoring of nanofiltration process applied for different industrial wastewater treatment.
Rocznik
Strony
24--29
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • [1] Koltuniewicz A.B., Drioli E.: Membrane in clean technology. Theory and practice, Vol.1-2, Wiley-VCH Verlag GmbH & Co. KGaA, 2008
  • [2] Ahmad A.L., Ooi B.S., Wahab Mohammad A., Choudhury J.P.: Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment, Desalination, 168, pp. 215-221, 2004
  • [3] Ghizellaoui S., Chibani A., Ghizellaoui S.: Use of nanofiltration for partial softening of very hard water, Desalination, 179, pp. 315-322, 2005
  • [4] Orecki A., Tomaszewska M., Karakulski K., Morawski A.W.: Surface water treatment by the nanofiltration method, esalination, 162, pp. 47-54, 2004
  • [5] Bellona C., Drewes J.E.: Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: A pilotscale study, Water Research, 41, pp. 3948-3958, 2007
  • [6] Ku Y., Chen S., Wang W.: Effect of solution composition on the removal of copper ions by nanofiltration, Sep. Purif. echnol., 43, pp. 135-142, 2005
  • [7] Ortega L.M., Lebrun R., Blais J.F., Hausler R.: Removal of metal ions from an acidic leachate solution by nanofiltration membranes, Desalination, 227, pp. 204-216, 2008
  • [8] Wang Z., Liu G., Fan Z., Yang X., Wang J., Wang S.: Experimental study on treatment of electroplating wastewater by nanofiltration, J. Membr. Sci., 305, pp. 185-195, 2007
  • [9] Ortega L.M., Lebrun R., Noel I.M., Hausler R.: Application of nanofiltration in the recovery of chromium(III) from tannery effluents, Sep. Purif. Technol., 44, pp. 45-52, 2005
  • [10] Das C., Patel P., De S., DasGupta S.: Treatment of tanning effluent using nanofiltration followed by reverse osmosis, Sep. Purif. Technol., 50, pp. 291-299, 2006
  • [11] Gomes S., Cavaco S.A., Quina M.J., Gando-Ferreira L.M.: Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis, Desalination, 254, pp. 80-89, 2010
  • [12] Religa P., Kowalik A., Gierycz P.: Application of nanofiltration for chromium concentration in the tannery wastewater, J. azard. Mater., 186, pp. 288-292, 2011
  • [13] Religa P., Kowalik A., Gierycz P.: Effect of membrane properties on chromium(III) recirculation from concentrate salt ixture solution by nanofiltration, Desalination, 274, pp. 164-170, 2011
  • [14] Religa P., Kowalik A., Gierycz P.: A new approach to chromium concentration from salt mixture solution using anofiltration, Sep. Purif. Technol., 82, pp. 114-120, 2011
  • [15] Tanninen J., Manttari M., Nystrom M.: Effect of salt mixture concentration on fractionation with NF membranes, J. Membr. Sci., 283, pp. 57-64, 2006
  • [16] Sharna R.R., Chellam S.: Solute rejection by porous thin film composite nanofiltration membranes AT high feed water ecoveries, J. Colloid Interface Sci., 328, pp. 353-366, 2008
  • [17] Childress A.E., Elimelech M.: Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteriztic, Environ. Sci. Technol., 34, pp. 3710-3716, 2000
  • [18] Afonso M.D., Hagmeyer G., Gimbel R.: Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions, Sep. Purif. Technol., 22-23, pp. 529-541, 2001
  • [19] Rice G., Barber A.R., O’Connor A.J., Pihlajamaki A., Nystrom M., Stevens G.W., Kentish S.E.: The influence of dairy salts on nanofiltration membrane charge, J. Food Eng., 107, pp. 164-172, 2011
  • [20] Teixeira M.R., Rosa M.J., Nystrom M.: The role of membrane charge on nanofiltration performance, J. Membr. Sci., 265, pp. 160-166, 2005
  • [21] Ernst M., Bismarck A., Springer J., Jekel M.: Zeta-potential and rejection rates of a polyethersulfone nanofiltration membrane in single salt solutions, J. Membr. Sci., 165, pp. 251-259, 2000
  • [22] Weber R., Chmiel H., Mavrov V.: Characteristics and application of new ceramic nanofiltration membranes, Desalination, 157, pp. 113-125, 2003
  • [23] Al-Amoudi A., Williams P., Mandale S., Lovitt R.W.: Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability, Sep. Purif. Technol., 54, pp. 234-240, 2007
  • [24] Petrinic I., Pusic T., Mijatovic I., Simoncic B., Sostar Turk S., Characterization of polymeric nanofiltration membranes, Kem. Ind., 56, pp. 561-567, 2007
  • [25] Religa P., Kowalik-Klimczak A., Gierycz P.: Study on the behavior of nanofiltration membranes using for chromium(III) recovery from salt mixture solution, Desalination, 315, pp. 115-123, 2013
  • [26] Deon S., Escoda A., Fievet P.: A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes, Chem. Eng. Sci., 66, pp. 2823-2832, 2011
  • [27] Deon S., Dutournie P., Limousy L., Bourseau P.: Transport of salt mixture through nanofiltration membranes: Numerical identification of electric and dielectric contributions, Sep. Purif.Technol., 69, pp. 225-233, 2009
  • [28] Chaudhari L.B., Murthy Z.V.P.: Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model, J. Hazard. Mater., 180, pp. 309-315, 2010
  • [29] Kelewou H., Lhassani A., Merzouki M., Drogui P., Sellamuthu B.: Salts retention by nanofiltration membranes: Physicochemical and hydrodynamic approaches and modeling, Desalination, 277, pp. 106-112, 2011
  • [30] Zhua H., Szymczyk A., Balannec B.: On the salt rejection properties of nanofiltration polyamide membranes formed by interfacial polymerization, J. Membr. Sci., 379, pp. 215-223, 2011
  • [31] Schaep J., Vandecasteele C., Mohammad A.W., Bowen W.R.: Modelling the retention of ionic components for different nanofiltration membranes, Sep. Purif. Technol., 22-23, pp. 169-179, 2001
  • [32] Mohammad A.W., Takriff M.S.: Preciding flux and rejection of multicomponents salts mixture in nanofiltration membranes, Desalination, 157, pp. 105-111, 2003
  • [33] Hagmeyer G., Gimbel R.: Modelling the salt rejection of nanofiltration membranes for ternary ion mixture and for single salts at different pH value, Desalination, 117, pp. 247-256, 1998
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f0ea0c7-deb2-47a9-bddc-d23bf67fa106
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.