PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of two-wheeled self-balancing robot driven by DC gearmotors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot’s mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.
Rocznik
Strony
739--747
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Department of Mechatronics, Faculty of Mechanical Engineering Technical University of Košice Park Komenského 8, 042 00 Košice, SLOVAKIA
autor
  • Department of Mechatronics, Faculty of Mechanical Engineering Technical University of Košice Park Komenského 8, 042 00 Košice, SLOVAKIA
autor
  • Department of Mechatronics, Faculty of Mechanical Engineering Technical University of Košice Park Komenského 8, 042 00 Košice, SLOVAKIA
autor
  • Department of Mechatronics, Faculty of Mechanical Engineering Technical University of Košice Park Komenského 8, 042 00 Košice, SLOVAKIA
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering Institute of Machine Building and Operation Zielona Góra, POLAND
autor
  • Kalashnikov Izhevsk State Technical University 7 Studencheskaya St., 426069 Izhevsk, RUSSIA
Bibliografia
  • [1] Galicki M. (2016): Robust task space trajectory tracking control of robotic manipulators. International Journal of Applied Mechanics and Engineering, vol.21, No.3, pp.547-568.
  • [2] Kharola A., Patil P., Raiwani S. and Rajput D. (2016): A comparison study for control and stabilisation of inverted pendulum on inclined surface using PID and fuzzy controllers. Perspectives in Science, vol.8, pp.187-190.
  • [3] Chynoradský L. and Božek P. (2016): Research and development of a new system of the autonomous control of robot trajectory. Acta Mechatronica, vol.1, pp.25-28.
  • [4] Jeong S. and Takahashi T. (2008): Wheeled inverted pendulum type assistant robot: design concept and mobile control. Intelligent Service Robotics, vol.1, No.4, pp.313-320.
  • [5] Takei T., Imamura R. and Yuta S. (2009): Baggage transportation and navigation by a wheeled inverted pendulum mobile robot. IEEE Transactions on Industrial Electronic, vol.56, No.10, pp.3985-3994.
  • [6] Shino M., Tomokuni N., Murata G. and Segawa M. (2014): Wheeled inverted pendulum type robotic wheelchair with integrated control of seat slider and rotary link between wheels for climbing stairs. Advanced Robotics and its Social Impacts, pp.121-126.
  • [7] Grasser F., D’Arrigo A., Colombi S. and Rufer C. (2002): JOE: A Mobile Inverted Pendulum. IEEE Transaction on Industrial Electronics, vol.49, No.1, pp.107-114.
  • [8] Fijałkowski B. (2016): Mechanical homogeneous continuous dynamical systems holor algebra steady-state alternating velocity analysis. International Journal of Applied Mechanics and Engineering, vol.21, No.4, pp.805-826.
  • [9] Hendzel Z. and Rykala L. (2017): Modelling of dynamics of a wheeled mobile robot with mecanum wheels with the use of Lagrange equations of the second kind. International Journal of Applied Mechanics and Engineering, vol.22, No.1, pp.81-99.
  • [10] Zhao J. and Ruan X. (2009): The flexible two-wheeled self-balancing robot intelligence controlling based on Boltzmann. Proceedings of the 2009 International Conference on Robotics and Biomimetics (ROBIO) on. IEEE, 2009., pp.2090-2095.
  • [11] Lipták T., Kelemen M., Gmiterko A., Virgala I. and Hroncová D. (2016): The control of holonomic system. Acta Mechatronica, vol.1, No.1, pp.15-20.
  • [12] Wu J., Zhang W. and Wang S. (2012): A two-wheeled self-balancing robot with the fuzzy PD control method. Mathematical Problems in Engineering, vol.2012, Article ID 469491, pp.13.
  • [13] Sun F., Yu Z. and Yang H. (2014): A design for two-wheeled self-balancing robot based on Kalman filter and LQR. Mechatronics and Control (ICMC), 2014 International Conference on. IEEE, 2014. pp.612-616.
  • [14] Per J., Ali P. and Olov R. (2009): Two wheeled balancing LEGO robot. Department of Information Technology, UPPSALA University, Sweden.http://www.it.uu.se/edu/course/homepage/styrsystem/vt09/Nyheter/Grupper/Rapport_group6.pdf [2017.05.01]
  • [15] Kuryło P., Cyganiuk J., Tertel E. and Frankovský P. (2016): Machine vision investigate the trajectory of the motion human body. Review of the Methods, vol.1, No.2, pp.7-13.
  • [16] Ali Y.S.E., Noor S.B.M., Bashi S.M. and Hassan M.K. (2003): Microcontroller performance for DC motor speed control system. Proceedings. National Power Engineering Conference, 2003. PECon 2003, pp.104-109. doi:10.1109/PECON.2003.1437427.
  • [17] Mishra S.K. and Chandra D. (2014): Stabilization and tracking control of inverted pendulum using fractional order PID controllers. Journal of Engineering, vol.2014, Article ID 752918, pp.9.
  • [18] Muskinja N. and Tovornik B. (2016): Swinging up and stabilization of a real inverted pendulum. IEEE Transactions on Industrial Electronics, vol.53, pp.631-639.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f0df806-5c60-47a9-9263-1a076ddc40ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.