Identyfikatory
Warianty tytułu
Zastosowanie sieci bayesowskiej do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności
Języki publikacji
Abstrakty
Reliability analysis of complex multi-state system has uncertainty, which is caused by complex structures, limited test samples, and insufficient reliability data. By introducing fuzzy mathematics and grey system theory into the Bayesian network, the model of the grey fuzzy Bayesian network is built, and the reliability analysis method of complex uncertainty multi-state system with the non-deterministic membership function and the interval characteristic quantity is proposed in this paper. Using the trapezoidal membership function with fuzzy support radius variable to describe the fault state of the component, it can effectively avoid the influence of human subjective factors on the selection of the membership function and solve the problem that the fault states of the system and its components are difficult to define accurately. And the conditional probability table containing interval grey numbers is constructed to effectively express the uncertain fault logic relationship between the system and its components. Moreover, a parameter planning model of the system reliability characteristic quantities is constructed, and the system reliability characteristic quantities are expressed as the form of interval values. Finally, two sets of numerical experiments are conducted and discussed, and the results show that the proposed method is an effective and a promising approach to reliability analysis for complex uncertainty multi-state systems.
Analiza niezawodności złożonych systemów wielostanowych obarczona jest niepewnością związaną ze złożonością ich struktury, ograniczoną liczbą próbek badawczych i niewystarczającymi danymi dotyczącymi niezawodności. W przedstawionej pracy, wprowadzenie elementów matematyki rozmytej i teorii szarych systemów do sieci bayesowskiej umożliwiło budowę modelu szarej rozmytej sieci bayesowskiej i zaproponowanie metody analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności, która wykorzystuje niedeterministyczną funkcję przynależności oraz pojęcie interwałowej wielkości charakterystycznej. Zastosowanie trapezoidalnej funkcji przynależności z rozmytą zmienną promienia nośnego do opisu stanu uszkodzenia komponentu, pozwala zniwelować wpływ subiektywnego czynnika ludzkiego na wybór funkcji przynależności i eliminuje konieczność precyzyjnego definiowania stanu uszkodzenia systemu i jego elementów składowych. Opracowana tabela prawdopodobieństw warunkowych zawierająca szare liczby interwałowe pozwala wyrazić niepewne zależności logiki uszkodzeń między systemem a jego składnikami. Ponadto, w pracy skonstruowano model planowania parametrów charakterystycznych wielkości niezawodności systemu wyrażonych w postaci wartości interwałowych. W ostatniej części artykułu omówiono dwie serie eksperymentów numerycznych, których wyniki pokazują, że proponowana metoda stanowi skuteczne i obiecujące podejście do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności.
Czasopismo
Rocznik
Tom
Strony
419--429
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- School of Mechanical Engineering Dalian University of Technology No.2, Linggong Road, High-tech District, Dalian, 116024, P.R. China
autor
- School of Mechanical Engineering Dalian University of Technology No.2, Linggong Road, High-tech District, Dalian, 116024, P.R. China
autor
- School of Mechanical Engineering Dalian University of Technology No.2, Linggong Road, High-tech District, Dalian, 116024, P.R. China
Bibliografia
- 1. Alvarez D A, Uribe F, Hurtado J E. Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory. Mechanical Systems & Signal Processing 2018; 100: 782-801, https://doi.org/10.1016/j.ymssp.2017.07.040.
- 2. Barlow R E, Wu A S. Coherent systems with multi-state components. Mathematics of Operations Research 1978; 3(4): 275-281, https://doi.org/10.1287/moor.3.4.275.
- 3. Cai B P, Kong X D, Liu Y H, et al. Application of Bayesian networks in reliability evaluation. IEEE Transactions on Industrial Informatics 2018, https://doi.org/10.1109/TII.2018.2858281.
- 4. Cai B P, Liu Y H, Fan Q , et al. Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network. Applied Energy 2014; 114:1-9, https://doi.org/10.1016/j.apenergy.2013.09.043.
- 5. Cai B, Liu Y, Liu Z, et al. Using Bayesian networks in reliability evaluation for subsea blowout preventer control system. Reliability Engineering & System Safety 2012; 108(12): 32-41, https://doi.org/10.1016/j.ress.2012.07.006.
- 6. Chen D N, Yao C Y. Reliability analysis of multi-state system based on fuzzy Bayesian networks and application in hydraulic system. Journal of Mechanical Engineering 2012; 48(16): 175-183, https://doi.org/10.3901/JME.2012.16.175.
- 7. Curcurù G, Galante G M, Fata C M L. Epistemic uncertainty in fault tree analysis approached by the evidence theory. Journal of Loss Prevention in the Process Industries 2012; 25(4): 667-676, https://doi.org/10.1016/j.jlp.2012.02.003.
- 8. Destercke S, Sallak M. An extension of universal generating function in multi-state systems considering epistemic uncertainties. IEEE Transactions on Reliability 2013; 62(2): 504-514, https://doi.org/10.1109/TR.2013.2259206.
- 9. Fakhravar D, Khakzad N, Reniers G, et al. Security vulnerability assessment of gas pipelines using discrete-time Bayesian network. Process Safety & Environmental Protection 2017; 111: 714-725, https://doi.org/10.1016/j.psep.2017.08.036.
- 10. Gu C Q, Zhang C K, Zhou D Y, et al. Reliability analysis of multi-state systems based on intuitionistic fuzzy Bayesian networks. Journal of Northwestern Polytechnical University 2014; 32(5): 744-748.
- 11. He Q, Zha Y, Zhang R, et al. Reliability analysis for multi-state system based on triangular fuzzy variety subset Bayesian networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19(2): 152-165, https://doi.org/10.17531/ein.2017.2.2.
- 12. Khakzad N, Khan F, Amyotte P. Risk-based design of process systems using discrete-time Bayesian networks. Reliability Engineering & System Safety 2013; 109: 5-17, https://doi.org/10.1016/j.ress.2012.07.009.
- 13. Lee D, Pan R. A nonparametric Bayesian network approach to assessing system reliability at early design stages. Reliability Engineering & System Safety 2018; 171: 57-66, https://doi.org/10.1016/j.ress.2017.11.009.
- 14. Li Y, Cui L, Lin C. Modeling and analysis for multi-state systems with discrete-time Markov regime-switching. Reliability Engineering & System Safety 2017; 166: 41-49, https://doi.org/10.1016/j.ress.2017.03.024.
- 15. Li Y F, Huang H Z, Liu Y, et al. A new fault tree analysis method: fuzzy dynamic fault tree analysis. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14(3): 208-214.
- 16. Li Y F, Zio E. A multi-state model for the reliability assessment of a distributed generation system via universal generating function. Reliability Engineering & System Safety 2012; 106(5): 28-36, https://doi.org/10.1016/j.ress.2012.04.008.
- 17. Liang X, Wang H F, Guo J, et al. Bayesian network based fault diagnosis method for on-board equipment of train control system. Journal of the China Railway Society 2017; 39(8): 93-100.
- 18. Lin Y H, Li Y F, Zio E. Integrating random shocks into multi-state physics models of degradation processes for component reliability assessment. IEEE Transactions on Reliability 2015; 64(1): 154-166, https://doi.org/10.1109/TR.2014.2354874.
- 19. Liu S F, Yang Y J, Wu L F, et al. Grey system theory and its application. Beijing: Science Press, 2014.
- 20. Nakahara Y, Sasaki M, Gen M. On the linear programming problems with interval coefficients. International Journal of Computers & Industrial Engineering 1992; 23: 301-304, https://doi.org/10.1016/0360-8352(92)90121-Y.
- 21. Natvig B. Multistate system reliability theory with applications. New York: Wiley, 2011, https://doi.org/10.1002/9780470977088.
- 22. Nguyen T P K, Beugin J, Marais J. Method for evaluating an extended fault tree to analyse the dependability of complex systems: application to a satellite-based railway system. Reliability Engineering & System Safety 2015; 133: 300-313, https://doi.org/10.1016/j.ress.2014.09.019.
- 23. Pan Q, Dias D. An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation. Structural Safety 2017; 67: 85-95, https://doi.org/10.1016/j.strusafe.2017.04.006.
- 24. Qi H, Li G, Jiang C, et al. Reliability analysis of multi-state system based on Bayesian networks. Modern Manufacturing Engineering 2014; 1: 92-96.
- 25. Rezvani S, Bahri P A, Urmee T, et al. Techno-economic and reliability assessment of solar water heaters in Australia based on Monte Carlo analysis. Renewable Energy 2017; 105: 774-785, https://doi.org/10.1016/j.renene.2017.01.005.
- 26. Shrestha A, Xing L, Dai Y. Decision diagram based methods and complexity analysis for multi-state systems. IEEE Transactions on Reliability 2010; 59(1): 145-161, https://doi.org/10.1109/TR.2009.2034946.
- 27. Yang X, Liu Y, Zhang Y, et al. Hybrid reliability analysis with both random and probability-box variables. Acta Mechanica 2015; 226(5): 1341-1357, https://doi.org/10.1007/s00707-014-1252-8.
- 28. Yao C Y, Chen D N, Wang B. Fuzzy reliability assessment method based on T-S fault tree and Bayesian network. Journal of Mechanical Engineering 2014; 50(2): 193-201, https://doi.org/10.3901/JME.2014.02.193.
- 29. Zarei E, Azadeh A, Khakzad N, et al. Dynamic safety assessment of natural gas stations using Bayesian network. Journal of Hazardous Materials 2017; 321: 830-840, https://doi.org/10.1016/j.jhazmat.2016.09.074.
- 30. Zhang L, Zhang J, Zhai H, Zhou S. A new assessment method of mechanism reliability based on chance measure under fuzzy and random uncertainties. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20(2): 219-228, https://doi.org/10.17531/ein.2018.2.06.
- 31. Zhang X, Wilson A. System reliability and component importance under dependence: a copula approach. Technometrics 2017; 59(2): 215-224, https://doi.org/10.1080/00401706.2016.1142907.
- 32. Zhang R J. Robust and optimization design with safety assessment technique of the parameter uncertainty. PhD dissertation. Beijng University of Posts and Telecommunication, China, 2015.
- 33. Zhou Q, Thai V V. Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction. Safety Science 2016; 83: 74-79, https://doi.org/10.1016/j.ssci.2015.11.013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f0d81c4-1025-4911-a984-25b8084f5179