PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapy podstawowych form pokrycia i użytkowania terenu zlewni Raby powyżej Zbiornika Dobczyckiego - porównanie dokładności klasyfikacji pikselowej i obiektowej obrazów LANDSAT TM

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Mapping of basic land-use/land cover types in upper Raba watershed - accuracy comparison of pixel-based and object-based approaches to LANDSAT TM images classification
Języki publikacji
PL
Abstrakty
EN
The research presented in the paper has been aimed at mapping the basic types of land-use in the upper Raba watershed (south Poland). The maps have been prepared for a study of the influence of land-use changes within the watershed on the sediment yields introduced into the reservoir. Because the erosion models used for sediment yields prediction need only to identify the main land-use / land cover classes (arable land, meadows and pastures, forests, waters, developed areas), the maps have been based on classification of middle-resolution satellite images (Landsat TM). In the research the results of traditional pixel-based classification were compared to the ones obtained in the object based approach. Six different Landsat TM images were classified. The methodology of both classification approaches have been described in the paper. The accuracy assessment of the classification results was based on their comparison with the land use types defined by the photo interpretation of colour composite images. The assessment was done by two operators. Each of them used different set of two hundred and fifty randomly generated sample points. In most cases the pixel-based approach resulted in higher overall accuracy. However, if overall accuracy confidence intervals are taken into consideration, none of the methods can be definitely recognised as a better one.
Rocznik
Tom
Strony
15--21
Opis fizyczny
Bibliogr. 19 poz., mapy
Twórcy
autor
  • Katedra Geoinformacji, Fotogrametrii i Teledetekcji Środowiska AGH w Krakowie
  • Katedra Geoinformacji, Fotogrametrii i Teledetekcji Środowiska AGH w Krakowie
autor
  • Katedra Geoinformacji, Fotogrametrii i Teledetekcji Środowiska AGH w Krakowie
Bibliografia
  • 1. Benz U., Hofmann P., Willhauck G., Lingenfelder I., Heynen M., 2004, Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239-258.
  • 2. Bhattarai, R., Dutta, D., 2007, Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale. Water Resour Management, 21, 1635-1647.
  • 3. Blaschke T., (w druku). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing (2009), doi:10.1016/j.isprsjprs.2009.06.004.
  • 4. Dorren L. K. A., Maier B., Seijmonsberger A. C., 2003, Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecology and Management, 183, 31–46.
  • 5. Drzewiecki W., Mularz S., Twardy S., Kopacz M., 2008, Próba kalibracji modelu RUSLE/SDR dla oceny ładunku zawiesiny wprowadzanego do Zbiornika Dobczyckiego z zlewni bezpośredniej. Archiwum Fotogrametrii, Kartografi i i Teledetekcji, Vol. 18, 83-98.
  • 6. eCognition, 2004, User Guide. Definiens Imaging.
  • 7. Gamanya R., De Mayer P., De Dapper M., 2009, Object-oriented change detection for the city of Harare, Zimbabwe. Expert Systems with Applications, 36, 571-588.
  • 8. Gao Y., Mas J. F., 2008, A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions. [w:] G.J .Hay, T. Blaschke and D. Marceau (Eds). GEOBIA 2008 – Pixels, Objects, Intelligence. GEOgraphic Object Based Image Analysis for the 21st Century. University of Calgary, Calgary Alberta, Canada, August 05-08. ISPRS Vol. No. XXXVIII-4/C1.
  • 9. Kettig R. L., Landgrebe D. A., 1976, Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics, GE-14, 19-26.
  • 10. Krasa J., Dostal T., Van Rompaey A., Vaska J., Vrana K., 2005, Reservoirs’ siltation measurements and sediment transport assessment in the Czech Republic, the Vrchlice catchment study. Catena, 64, 348-362.
  • 11. Lennartz S. P., Congalton R. G., 2004, Classifying and mapping forest cover types using IKONOS imagery in the northeastern United States [w:] ASPRS Annual Conference Proceedings, 23-28 May, (Denver, Colorado).
  • 12. Lewiński S., 2007, Porównanie klasyfikacji obiektowej z tradycyjną klasyfikacją pikselową z punktu widzenia automatyzacji procesu tworzenia bazy danych o pokryciu i użytkowaniu terenu. Roczniki Geomatyki, Tom V, zeszyt 1, 63-70.
  • 13. Oruc M., Marangoz A. M., Buyuksalih G., 2004, Comparison of pixel-based and object-oriented classification approaches using Landsat-7 ETM spectral bands. Geo-Imagery Bridging Continents, XXth ISPRS Congress, 12-23 July 2004 Istanbul, Turkey, Commission 4, 1118-1122.
  • 14. Qian J., Zhou Q., Hou Q., 2007, Comparison of pixel-based and object-oriented classification methods for extracting built-up areas in Arizone. ISPRS Workshop on Updating Geo-spatial Databases with Imagery & The 5th ISPRS Workshop on DMGISs, XXXVI(4/W54), 163-171.
  • 15. Richards J.A., 1993, Remote Sensing Digital Image Analysis, Springer-Verlag, Berlin.
  • 16. Robertson L. D., King D., 2009, Comparison of pixel and object-based classification in land cover change mapping. http://http-server.carleton.ca/~dking/papers/LC_ change_mapping_LDR.pdf, (dostęp 29.10.2009)
  • 17. Tadesse W., Coleman T. L., Tsegaye T. D., 2003, Improvement of Land Use and Land Cover Classification of an Urban Area Using Image Segmentation from Landsat ETM+Data. Proceedings of the 30th International Symposium on Remote Sensing of Environment (ISRES) – Information for Risk Management and Sustainable Development. PS-I.35, CD-ROM. The International Society of Photogrammetry and Remote Sensing (ISPRS). 10-14 November 2003 Honolulu, HI
  • 18. Van Rompaey, A., Vestraeten, G., Van Oost, K., Govers G., Poesen, J., 2001, Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms, 26, 1221-1236.
  • 19. Van Rompaey, A., Krasa, J., Dostal, T., Govers, G., 2003, Modeling sediment supply to rivers and reservoirs in Eastern Europe during and after the collectivisation period. Hydrobiologia, 494, 169-176.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f097d9d-01f2-4565-bba8-a44a982e4349
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.