PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of egg production by Temora longicornis from the southern Baltic Sea including salinity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents modeling of egg production (Egg — no. of eggs female−1 d−1) by Temora longicornis in the changing environmental conditions of the southern Baltic Sea (Gdańsk Deep). It is hypothesized that the food-saturated rate of egg matter production is equivalent to the specific growth rate of copepods. Based on the findings from the south-western Baltic Sea, Egg of T. longicornis is evaluated as a function of food concentration, temperature and salinity over a wide range of these parameters. Subsequently, the rate of reproduction during the seasons in the Gulf of Gdańsk is determined. According to our calculations, values of Egg reach ca 11 eggs per day in April and decline strongly in June-July, while the second smaller peak in reproduction occurs in September, ca 8 eggs per day. Our results suggest that egg production rates of T. longicornis depend not only on food concentration and temperature, but also on salinity, which is a masking factor in the Baltic Sea.
Rocznik
Strony
277--288
Opis fizyczny
Bibliogr. 87 poz., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712, Sopot, Poland
autor
  • Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
autor
  • Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
Bibliografia
  • 1. Alonzo, F., Mayzaud, P. & Razouls, S. (2001). Egg production and energy storage in relation to feeding conditions in the subantarctic calanoid copepod Drepanopus pectinatus: an experimental study of reproduction strategy. Mar. Ecol. Prog. Ser. 209, 231–242.
  • 2. Ambler, J. W. (1985). Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuar. Coast. Shelf Sci. 20, 743–760.
  • 3. Antajan, E. (2004). Responses of calanoid copepods to changes in phytoplankton dominance in the diatom — Phaeocystis globosa dominated Belgium coastal waters. Published doctoral dissertation, University of Brussel, Belgium.
  • 4. Arendt, K. E., Jónasdóttir, S. H., Hansen, P. J. & Gärtner, S. (2005). Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Mar. Biol. 146, 513–530.
  • 5. Bakker, C. & Van Rijswijk, P. (1987). Development time and growth rate of the marine calanoid copepod Temora longicornis as related to food conditions in the Oosterschelde estuary (southern North Sea). Nether. J. Sea Res. 21(2), 125–145.
  • 6. Bautista, B., Harris, P. R. & Rodriguez, V. (1994). Temporal variability in copepod fecundity during two different spring bloom periods in coastal waters off Plymouth (SW England). J. Plankton Res. 16(10), 1367–1377.
  • 7. Beckman, B. R. & Peterson, T. W. (1986). Egg production by Acartia tonsa in Long Island Sound. J. Plankton Res. 8, 917–925.
  • 8. Berggreen, U., Hansen, B. & Kiørboe, T. (1988). Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol. 99, 341–352.
  • 9. Burdloff, D., Gasparini, S., Villate, F., Uriarte, I., Cotano, U., Sautour, B. & Etcheber, H. (2002). Egg production of the copepod Acartia bifilosa in two contrasting European estuaries in relation to seston composition. J. Exp. Mar. Biol. Ecol. 274, 1–17.
  • 10. Carotenuto, Y., Ianora, A., Buttino, I., Romano, G. & Miralto, A. (2002). Is postembryonic development in the copepod Temora stylifera negatively affected by diatom diets? J. Exp.Mar.Biol. Ecol. 276, 49–66.
  • 11. Castellani, C. & Lucas, I. A. N. (2003). Seasonal variation in egg morphology and hatching success in the calanoid copepods Temora longicornis, Acartia clausi and Centropages hamatus. J. Plankton Res. 25(5), 527–537.
  • 12. Checkley, D. M. Jr. (1980). The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol. Oceanogr. 25(3), 430–446.
  • 13. Corkett, C. J. & Zillioux, J. (1975). Studies on the effect of temperature on the egg laying of three species of calanoid copepods in the laboratory. Bull.Plankton Soc. Jpn. 21, 13–21.
  • 14. Cotonnec, G., Brunet, C., Sautour, N. & Thoumelin, G. (2001). Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. in the English Channel, as determined by pigment and fatty acid analyses. J. Plankton Res. 23, 693–703.
  • 15. Dagg, M. (1978). Estimated, in situ, rates of egg production for the copepod Centropages typicus (Kroyer) in the New York Bight ? J. Exp. Mar. Biol. Ecol. 34, 183–196.
  • 16. Dam, H. G. & Peterson, W. T. (1991). In situ feeding behaviour of the copepod Temora longicornis: effects of seasonal changes in chlorophyll size fraction and female size. Mar. Ecol. Prog. Ser. 71, 113–123.
  • 17. Devreker, D., Souissi, S. & Seuront, L. (2005). Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temora longicornis (Copepoda, Calanoida) in the Eastern English Channel? J. Exp. Mar. Biol. Ecol. 318, 145–162.
  • 18. Dzierzbicka-Glowacka, L. (2004a). Growth and development of copepodite stages of Pseudocalanus spp.. J. Plankton Res. 26, 49–60.
  • 19. Dzierzbicka-Glowacka, L. (2004b). The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration. Oceanologia 46, 45–63.
  • 20. Dzierzbicka-Glowacka, L. (2005a). A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf. J. Mar. Sys. 53, 19–36.
  • 21. Dzierzbicka-Glowacka, L. (2005b). Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model. Oceanologia 47, 591–619.
  • 22. Dzierzbicka-Glowacka, L. (2005c). Equivalence of rates of growth and egg production of Pseudocalanus. Oceanol. Hydrobiol. Stud. 34(4), 19–32.
  • 23. Dzierzbicka-Glowacka, L., Bielecka, L. & Mudrak, S. (2006a). Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) — numerical simulations. Biogeosciences 3, 635–650.
  • 24. Dzierzbicka-Glowacka, L. (2006b). Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations. Oceanologia 48(1), 41–71.
  • 25. Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2009a). Parameterization of a population model for Acartia spp. in the southern Baltic Sea. Part 1: Development time. Oceanologia 51(2), 165–184.
  • 26. Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2009b). Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production. Oceanologia 51(2), 185–201.
  • 27. Dzierzbicka-Glowacka, L., Żmijewska, M. I., Mudrak, S., Jakacki, J. & Lemieszek, A. (2010). Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea. Biogeosciences 7, 2247–2259.
  • 28. Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2011a). Development and growth of Temora longicornis: numerical simulations using laboratory culture data. Oceanologia 53(1), 137–161.
  • 29. Dzierzbicka-Glowacka, L., Jakacki, J., Janecki, M. & Nowicki, A. (2011b). Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea. Oceanologia, 53(1-TI), 449–470.
  • 30. Dzierzbicka-Glowacka, L., Piskozub, J., Jakucki, J., Mudrak, S. & Żmijewska, M. (2012a). Spatiotemporal distribution of copepod populations in the Gulf of Gdańsk (southern Baltic Sea). J. Oceanogr. 67(1), (DOI: 10.1007/s10872-012-0142-8).
  • 31. Dzierzbicka-Glowacka, L., Kalarus, M., Janecki, M., Musialik, M., Mudrak, S. & Żmijewska M. (2012b). Population dynamics of Pseudocalanus minutus elongatus in the Gulf of Gdańsk (southern Baltic Sea) — experimental and numerical results. J. Nat. Hist. (DOI:10.1080/00222933.2012.722698).
  • 32. Dzierzbicka-Głowacka, L., Jakacki, J., Nowicki A., Janecki, M. (2013). Activation of the operational ecohydrodynamic model (3D CEMBS) — the hydrodynamic part. Oceanologia, 55(3), 519–541 (DOI:10.5697/oc.55-3.519 ).
  • 33. Dzierzbicka-Głowacka, L., Jakacki, J., Nowicki A., Janecki, M. (2013). Activation of the operational ecohydrodynamic model (3D CEMBS) — the ecosystem module. Oceanologia, 55(3), 543–572 (DOI:10.5697/oc.55-3.543).
  • 34. Evjemo, J. O., Tokle, N., Vadstein, O. & Olsen, Y. (2008). Effect of essential dietary fatty acids on egg production and hatching success of the marine copepod Temora longicornis. J. Exp.. Mar. Biol. Ecol. 365, 31–37.
  • 35. Fockedey, N. & Mees, J. (1999). Feeding of the hyperbenthic mysid Neomysis integer in the maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. J. Mar. Sys. 22, 207–228.
  • 36. Fransz, H. G., Gonzalez, S. R. & Klein Breteler, W. C. M. (1989). Fecundity as a factor controlling the seasonal population cycle in Temora longicornis (Copepoda, Calanoida). In J. S. Ryland & P. A. Tyler (Eds.), Reproduction, genetics and distributions of marine organisms. Procedings of the 23rd European Marine Biology Symposium (pp. 83–89) Olsen and Olsen, Fredensborg, Denmark.
  • 37. Fransz, H. G. & Gonzalez, S. R. (1991). Daily egg production of Temora longicornis (Copepoda, Calanoida) during winter and early spring in the Marsdiep (southern North Sea). Hydrobiol. Bull. 25(1), 61–64.
  • 38. Fransz, H. G. Gonzalez, S. R., Cadée, G. C. & Hansen, F. C. (1992). Long-term change of Temora longicornis (Copepoda, Calanoida) abundance in a Dutch tidal inlet (Marsdiep) in relation to eutrophication. Nether. J. Sea Res. 30, 23–32.
  • 39. Fryd, M., Haslund, O. H. & Wohlgemuth, O. (1991). Development, growth and egg production of two copepod species Centropages hamatus and Centropages typicus in the laboratory. J. Plankton Res. 13, 683–689.
  • 40. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248–2251.
  • 41. Guisande, C., Maneiro, I., Riveiro, I., Barreiro, A., & Pazos, Y. (2002). Estimation of copepod trophic niche in the field using amino acids and marker pigments. Mar. Ecol. Prog. Ser.239, 147–156.
  • 42. Hall, C. J. & Burns, C. W. (2002). Effects of temperature and salinity on the survival and egg production of Gladioferens pectinatus Brady (Copepoda: Calanoida). Estuar. Coast. Shelf Sci., 55: 557–564
  • 43. Halsband, C. & Hirche, H. J. (2001). Reproductive cycles of dominant calanoid copepods in the North Sea. Mar. Ecol. Prog. Ser. 209, 219–229.
  • 44. Halsband-Lenk, C., Carlotti, F. & Greve, W. (2004). Life-history strategies of calanoid congeners under two different climate regimes: a comparison. J. Mar. Sci. 61, 709–720.
  • 45. Harris, R. P. & Paffenhöfer, G. A. (1976). Feeding, growth and production of the marine planktonic copepod Temora longicornis Müller. J. Mar. Biol. Assoc.UK 56, 675–690.
  • 46. Hernroth, L. (1985). Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. The Baltic Marine Biologists 10, 1–32.
  • 47. Hirche, H. J. (1992). Egg production of Eurytemora affinis — effect of k-strategy. Estaur. Coast.Shelf Sci., 35, 395–407.
  • 48. Hirche, H. J., Meyer, U. & Niehoff, B. (1997). Egg production of Calanus finmarchicus - effect of food, temperature and season. Mar. Biol. 127, 609–620.
  • 49. Hirst, A. G. & Bunker, A. J. (2003). Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol. Oceanogr. 48, 1988–2010.
  • 50. Holste, L. & John, M. A. St. (2009). The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar. Biol. 156, 527–540.
  • 51. Hopp, U., Maier, G. & Bleher, R. (1997) Reproduction and adult longevity of five species of planktonic cyclopoid copepods reared on different diets: a comparative study. Freshwater Biology 38, 289–300.
  • 52. Ianora, A., Mazzocchi, M. G. & Grottoli, R. (1992). Seasonal fluctuations in fecundity and hatching success in the planktonic copepod Centropages typicus. J. Plankton Res. 14, 1483–1494.
  • 53. Kiørboe, T., Møhlenberg, F. & Hamburger, K., (1985). Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser. 26(1–2), 85–97.
  • 54. Kiørboe, T. & Nielsen, T. G. (1994). Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39(3), 493–507.
  • 55. Klein Breteler, W. C. M., Fransz, H. G. & Gonzalez, S. R. (1982). Growth and development of four calanoid copepod species under experimental and natural conditions. Nether.J.Sea Res. 16, 195–207.
  • 56. Klein Breteler, W. C. M. & Gonzalez, S. R. (1986). Culture and development of Temora longicornis (Copepoda, Calanoida) at different conditions of temperature and food. Syllogeus 58, 71–85..
  • 57. Klein Breteler, W. C. M. & Gonzalez, S. R. (1986). Culture and development of Temora longicornis (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar. Ecol. Prog. Ser. 119, 99–110.
  • 58. Kleppel, G. S. (1993). On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99, 183–195.
  • 59. Koski, M., Engstrom, J. & Viitasalo, M. (1999). Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Mar. Ecol. Prog. Ser. 186, 187–197.
  • 60. Koski, M., Dutz, J. & Klein Breteler, W. C. M. (2005). Selective grazing of Temora longicornis in different stages of a Phaeocystis globosa bloom — a mesocosm study. Harmful Algae 4, 915–927.
  • 61. Kreibich, T., Saborowski, R., Hagen, W. et al., (2008). Short-term variation of nutritive and metabolic parameters in Temora longicornis females (Crustacea, Copepoda) as a response to diet shift and starvation. Helgoland Mar. Res. 62, 241–249.
  • 62. Kozlowsky-Suzuki, B., Carlsson, P., Rühl, A. & Granéli, E. (2006). Food selectivity and grazing impact on toxic Dinophysis spp. by copepods feeding on natural plankton assemblages. Harmful Algae 5, 57–88.
  • 63. Landry, M. R. (1978). Population dynamics and production of a planktonic marine copepod, Acartia clause, in a small temperature lagoon on San Juan Island, Washington. Inter. Rev.ges. Hydrob.63, 77–119.
  • 64. Last, J. M. (1980). The food of twenty species of fish larvae in the west-central North Sea. Fish. Res. Tech. Report, Lowestoft 60, 1–44.
  • 65. Lee, H. W., Ban, S., Ikeda, T. & Matsuishi, T. (2003). Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. J. Plankton Res. 25(3), 261–271.
  • 66. Makino, W. & Ban, S. (2000). Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment. Limnol. Oceanogr. 45, 396–407.
  • 67. Mauchline, J. (1998). The Biology of Calanoid Copepods. San Diego: Academic Press.
  • 68. McLaren, I. A. & Leonard, A. (1995). Assessing the equivalence of growth and egg production of copepods. ICES J. Mar. Sci. 52, 397–408.
  • 69. Maps, F., Runge, J. A., Zakardjian, B. & Joly, P. (2005). Egg production and hatching success of Temora longicornis (Copepoda, Calanoida) in the southern Gulf of St. Lawrence. Mar. Ecol.Prog. Ser. 285, 117–128.
  • 70. Marshall, S. M. & Orr, A. P. (1952). On the biology of Calanus finmarchicus. VII. Factors affecting egg production. J. Mar. Biol. Assoc.UK 30, 527–547.
  • 71. Mudrak, S. (2004). Short- and long-term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdańsk as an example. Unpublished doctoral dissertation, University of Gdańsk, Gdynia, Poland (in Polish).
  • 72. Mullin, M. M. & Brooks, E. R. (1970). The effect of concentration of food on body weight, cumulative ingestion, and rate of growth of the marine copepod Calanus helgolandicus. Limnol.Oceanogr. 15, 748–755.
  • 73. Parrish, K. K. & Wilson, D. F. (1978). Fecundity studies on Acartia tonsa (Copepods: Calanoidae) in standardized culture. Mar. Biol. 46, 65–81.
  • 74. Peters, J. (2006). Lipids in key copepod species of the Baltic Sea and North Sea — implications for life cycles, trophodynamics and food quality. Published doctoral dissertation, University Bremen, Bremen.
  • 75. Peters, J., Dutz, J. & Hagen, W. (2007). Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Mar. Ecol. Prog. Ser. 341, 153–163.
  • 76. Peterson, W. T. (1985). Abundance, age structure and in situ egg production rates of the copepod Temora longicornis in Long Island Sound, New York. Bull. Mar. Sci. 37(2), 726–738.
  • 77. Peterson, W. T. & Bellantoni, D. C. (1987). Relationship between water column stratification, phytoplankton cell size and copepod fecundity in Long Island Sound and off Central Chile. In A.I.L. Payne, J.A. Gulland & K.H. Brink (Eds.), The Benguela and comparable ecosystems: South African (pp. 411–421). J. Mar. Sci. 5.
  • 78. Peterson, W. T., Tiselius, P. & Kiørboe, T. (1991). Copepod egg production, molting and growth rates, and secondary production, in the Skagerrak in August 1988. J. Plankton Res. 13, 131–154.
  • 79. Peterson, W. T. & Kimmerer, W. J. (1994). Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39(7), 1594–1605.
  • 80. Poli, J. M. & Castel, J. (1983). Cycle biologique en laboratoire d`un copépode planctonique de l`estuaire de la Gironde: Eurytemora hirundoides (Nordquist, 1888). Vie Milieu 33, 79–86.
  • 81. Razoul, S. (1975). Fécondite, maturité sexuelle et différenciation de l`appareil genital des femelles de deux copepods planctoniques: Centropages typicus et Temora stylifera. Pubbl. Stn. Zool. Napoli 39, 297–306.
  • 82. Sautour, B. & Castel, J. (1999). Grazing activity of mesoplanktonic copepods in a shallow bay during an algal spring bloom (Marennes-Oléron Bay, France). J. Mar. Biol Assoc. UK. 79, 73–84.
  • 83. Sekiguchi, H., McLaren, I. A. & Corkett, C. J. (1980). Relationship between growth rate and egg production in the copepod Acartia clausi hudsonica. Mar. Biol. 58, 133–138.
  • 84. Smith, S. L. & Lane, P. V. Z. (1985). Laboratory studies of the marine copepod Centropages typicus: egg production and development rates. Mar. Biol. 85, 153–162.
  • 85. Wiktor, K. (1990). Zooplankton biomass in the coastal waters of Gdańsk Gulf. Oceanography12, 109–134 (in Polish).
  • 86. Van Rijswijk, P., Bakker, C. & Vink, M. (1989). Daily fecundity of Temora longicornis (Copepoda, Calanoida) in the Osterschelde estuary (SW Netherlands). Nether. J. Sea Res. 23, 293–303
  • 87. Zismann, L., Berdugo, V. & Kimor, B. (1974). The food and feeding habits of early stages of grey mullets in the Haifa Bay region. Aquaculture 6, 59–75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f056a26-d7af-43b7-8ac0-aad01c627aaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.