PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Thoron emanation and exhalation of Slovenian soils determined by a PIC detector-equipped radon monitor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference „Radon in the Environment” (2nd ; 25-29.05.2015 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The health risk from thoron (Rn-220) is usually ignored owing to its short half-life (55.6 s), but the generated thoron decay products can cause a significant dose contribution. In this study, altogether 51 Slovenian soil samples were investigated using an accumulation chamber technique to obtain information about thoron exhalation features. The obtained (massic) thoron exhalation results varied between 6.9 and 149 mBq•kg–1•s–1 (average: 55.2 mBq•kg –1•s–1). The Th-232 content was determined using HPGe gamma spectrometry. The Th-232 activity concentration ranged between 9.3 and 161.7 Bq•kg–1 (average: 64.6 Bq•kg –1). The thoron emanation features were also calculated from the obtained results (2.9 to 21.2% with an average of 8.6%). The thoron exhalation and emanation properties were compared with the radon exhalation and emanation features determined in a previous study. It was found that there was no correlation between the radon and thoron emanation features, according to the obtained data. This can be explained by the different Ra-224 and Ra-226 distributions in the soil grains. As a result, the thoron emanation factor cannot be predicted from radon emanation and vice versa.
Słowa kluczowe
Czasopismo
Rocznik
Strony
379--384
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary and Social Organization for Radioecological Cleanliness, József Attila u. 7/a., H-8200, Veszprém, Hungary
autor
  • Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary, Tel.: +36 88 624 789, Fax: +36 88 624 178
autor
  • Radon Centre, Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
autor
  • Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary, Tel.: +36 88 624 789, Fax: +36 88 624 178
autor
  • Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary, Tel.: +36 88 624 789, Fax: +36 88 624 178
autor
  • Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary, Tel.: +36 88 624 789, Fax: +36 88 624 178
Bibliografia
  • 1. World Health Organization. (2009). WHO handbook on indoor radon: a public health perspective. Geneva: WHO Press.
  • 2. Meisenberg, O., & Tschiersch, J. (2012). Specific properties of a model of thoron and its decay products in indoor atmospheres. Nukleonika, 55(4), 463–469.
  • 3. Kardos, R., Gregoric, A., Jonas, J., Vaupotic, J., Kovacs, T., & Ishimori, Y. (2015). Dependence of radon emanation of soil on lithology. J. Radioanal. Nucl. Chem., 304, 1321–1327. DOI: 10.1007/s10967-015-3954-3.
  • 4. Kovler, K. (2011). Legislative aspects of radiation hazards from both gamma emitters and radon exhalation of concrete containing coal fly ash. Constr.Build. Mater., 25(8), 3404–3409. DOI: 10.1016/j.conbuildmat.2011.03.031.
  • 5. Sas, Z., Somlai, J., Jonas, J., Szeiler, G., Kovacs, T.,Gyongyosi, Cs., & Sydo, T. (2013). Radiological survey of Hungarian clays; radon emanation and exhalation influential effect of sample and internal structure conditions. Rom. J. Phys., 58, 243–250.
  • 6. Sas, Z., Somlai, J., Szeiler, G., & Kovacs, T. (2015). Usability of clay mixed red mud in Hungarian building material production industry. J. Radioanal. Nucl. Chem., 306, 271–275. DOI: 10.1007/s10967-015-3966-z.
  • 7. Shiroma, Y., Hosoda, M., Ishikawa, T., Sahoo, S. K.,Tokonami, S., & Furukawa, M. (2015). Estimation of radon emanation coeffi cient for representative soils in Okinawa, Japan. Radiat. Prot. Dosim., 167(1/3), 147–150. DOI: 10.1093/rpd/ncv233.
  • 8. Somlai, J., Horvath, M., Kanyar, B., Lendvai, Z., & Nemeth, Cs. (1999). Radiation hazard of coal-slags as building material in Tatabanya town (Hungary). Health Phys., 75(6), 648–651. DOI: 10.1097/00004032-199812000-00010.
  • 9. Netherlands Standardization Institute. (2001). Dutch Standard: Radioactivity measurement. Determination method of the rate of the radon exhalation of dense building materials. NEN 5699:2001. Netherland, Postbus.
  • 10. Tokonami, S. (2005). Summary of dosimetry (radon and thoron) studies. Int. Congress Series, 1276(2), 151–154. DOI: 10.1016/j.ics.2004.09.056.
  • 11. Zunic, Z. S., Fujimoto, K., Yarmoshenko, I. V., Birovljev, A., Celikovic, I., Ujic, P., Simopoulos, S. E., Olko, P., Budzanowski, M., McLaughlin, J. P., & Waligorski, M. P. R. (2004). Field investigations on radon, thoron and penetrating environmental radiation in selected regions of the western Balkan countries. In 11th International Congress of International Radiation Protection Agency, IRPA11, 23–28 May 2004 (pp. 23–28). Madrid, Spain.
  • 12. Ishimori, Y., Lange, K., Martin, P., Mayya, Y. S., & Phaneuf, M. (2013). Measurement and calculation of radon releases from NORM residues. Vienna: IAEA. (Technical Reports Series no. 474).
  • 13. Somlai, J., Jobbagy, V., Nemeth, Cs., Gorjanacz, Z., Kavasi, N., & Kovacs, T. (2006). Radiation dose from coal slag used as building material in the Transdanubian region of Hungary. Radiat. Prot. Dosim., 118(1), 82–87. DOI: 10.1093/rpd/nci32.
  • 14. Doi, M., Kobayashi, S., & Fujimoto, K. (1992). A passive measurement technique for characterization of high-risk houses in Japan due to enhanced levels of indoor radon and thoron concentrations. Radiat. Prot. Dosim., 45(1/4), 425–430.
  • 15. Kudo, H., Tokonami, S., Omori, Y., Ishikawa, T., Iwaoka, K., Sahoo, S. K., Akata, N., Hosoda, M., Wanabongse, P., Pornnumpa, C., Sun, Q., Li, X., & Akiba, S. (2015). Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat. Prot. Dosim., 167(1/3), 155–159. DOI: 10.1093/rpd/ncv235.
  • 16. Mjones, L., Falk, R., Mellander, H., & Nyblom, L. (1992). Measurements of thoron and thoron progeny indoors in Sweden. Radiat. Prot. Dosim., 45(1/4), 249–352.
  • 17. Milic, G., Jakupi, B., Tokonami, S., Trajkovic, R., Ishikawa, T., Celikovic, I., Ujic, P., Cuknic, O., Yarmoshenko, I., Kosanovic, K., Adrovic, F., Sahoo, S. K., Veselinovic, N., & Zunic, Z. S. (2010). The concentrations and exposure doses of radon and thoron in residences of the rural areas of Kosovo and Metohija. Radiat. Meas., 45(1), 118–121. DOI: 10.1016/j.radmeas.2009.10.052.
  • 18. Nuccetelli, C., & Bochicchio, F. (1998). The thoron issue: monitoring activities, measuring techniques and dose conversion factors. Radiat. Prot. Dosim., 78(1), 59–64. DOI: 10.1093/oxfordjournals.rpd.a032334.
  • 19. Szabo, Zs., Jordan, Gy., Szabo, Cs., Horvath, A., Holm, O., Kocsy, G., Csige, I., Szabo, P., & Homoki, Zs. (2014). Radon and thoron levels, their spatial and seasonal variations in adobe dwellings – a case study at the great Hungarian plain. Isot. Environ. Health Stud., 50(2), 211–225. DOI: 10.1080/10256016.2014.862533.
  • 20. Zak, A., Biernacka, M., & Mamont-Ciesla, K. (1993). Investigation of radon and thoron from building walls. Nukleonika, 38(4), 39–50.
  • 21. Kochowska, E., Kozak, K., Kozlowska, B., Mazur, J., & Dorda, J. (2009). Test measurements of thoron concentration using two ionization chambers AlphaGUARD vs. radon monitor RAD7. Nukleonika, 54(3), 189–192.
  • 22. Sun, H., & Furbish, D. J. (1995). Moisture content effect on radon emanation in porous media. J. Contam. Hydrol., 18(3), 239–255. DOI: 10.1016/0169-7722(95)00002-D.
  • 23. Csige, I., Szabo, Zs., & Szabo, Cs. (2013). Experimental technique to measure thoron generation rate of building material samples using RAD7 detector.Radiat. Meas., 59, 201–204. DOI: 10.1016/j.radmeas. 2013.07.003.
  • 24. Petropoulos, N. P., Anagnostakis, M. J., & Simopoulos, S. E. (2001). Building materials radon exhalation rate: ERRICCA intercomparison exercise results Sci. Tot. Environ., 272(1/3), 109–118. DOI: 10.1016/S0048-9697(01)00674-X.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f048c94-bcd8-4fa0-8995-c7265f64c775
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.