Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents cases, when the development of clean coal power depends on new materials. Current state-of-the-art, existing constraints and possible directions of further development are presented. Modern power plant should have: a) high efficiency, b) the possibility of simple and cheap CO2 capture. Efficiency increase can be achieved in a few ways as: further increase of thermodynamic parameters of steam cycle, introduction of gas turbine on gasified coal, reduction of loses connected with unavoidable temperature shifts through high temperature heat exchanger application or Solid Oxide Fuel Cell introduction. Currently, CO2 is captured with amine solutions from casual flue gas containing ~80% of nitrogen. There are ideas to redesign the power plant to avoid mixing of combustion products with atmospheric nitrogen and to use gas separating membranes and chemical loops instead of amines.
Rocznik
Strony
130--135
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Politechnika Warszawska, Uczelniane Centrum Badawcze „Materialy Funkcjonalne"
Bibliografia
- [1] VISWANATHAN R., BAKKER W.: Materials for Ultrasupercritical Coal Power Plants, Parts 1 &2, Journal of Materials Engineering and Performance, 10 (2001) 81-95 & 96-101
- [2] WRIGHT I.G., MAZIASZ P.J., ELLIS F.V. i in.: Materials issues for Turbines for Operation in Ultra-Supercrtical Steam, Proc. 29th International Technical Conference on Coal Utilization & Fuel Systems.Clearwater, Florida, April 18-22, 2004
- [3] ABE R: High Performance Creep Resistant Steels for 21st Century Power Plant, manuskrypt www.msm.cam.ac.uk/phase-trans/2005/LINK/84.pdf
- [4] ROMANOSKY R. i in.: NETL Project Fact Sheets: Steam Turbine Materials for Ultra Supercritical Coal Power Plants & Advanced Materials for Ultra Supercritical Boiler System.www.ned.doe.gov/technologies/coalpower/advresearch/ref-shelf.html
- [5] Bez autora: Forschungs- und Entwicklungskonzept für emissionsarme fossil befeuerte Kraftwerke Bericht der COORETEC Arbeitsgruppen, Herausgegeben vom Bundesministerium fur Wirtschaft und Arbeit, Referat-Kommunikation und Internet (LP4), 2003
- [6] GÖTTLICHER G.: Energetik der Kohlendioxidrückhaltung in Kraftwerken, VDl-Verlag, Dusseidort 1999, .
- [7] Bez autora: Clean Coal Technology Programs: Project Fact Sheets 2003, U.S. Department of Energy Assistant Secretary- for Fossil Energy, October 2003; www.netl.doe.gov/technologies/coalpower/cctc/resources/pdfsprog/cctupdat/Fact%20Sheet_2003.pdf
- [8] BONS J., FLETCHER T., GEORGE T. i in.: Deposition of Alternative (Syngas) Fuels on Turbine Blades with Film Cooling, Project Fact Sheet, www.ned.doe.gov/technologies/coalpower/turbines/refshelf/utsr-ractsheets/2006FactSR120.pdf
- [9] SCHILKE P.W.: Advanced Gas Turbine Materials and Coatings, GE Energy,http://www.gepower.com/prod_serv/products/tech_docs/en/downloads/ger3569g.pdf
- [10] Bez autora, Turbine Projects, Advanced Hot Section Materials and Coatings Test Rig, Project Description,www.ned.doe.gov/technologies/coalpower/rAirbmes/refshelf/summaries/41888_SWPC_Adv%20Mat%20&%20Coating%20Test%20Rig_Factsheet_Rev01_l 2-12-.pdf
- [11] WRIGHT I.G, GIBBONS T.B.: Recent developments in gas turbine materials and technology and their implications for syngas firing, International Journal of Hydrogen Energy 32 (2007) 3610 - 3621
- [12] SUNDEN B.: High Temperature Heat Exchangers (HTHE), Proceedings of 5th International Conferenceon Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Eds. R.K. Shah, M. Ishizuka, T.M. Rudy and V.V. Wadekar, Engineering Conferences International, Hoboken, NJ, USA, September 2005, pp. 226-238
- [13] LITKA, A.F., BESSETTE N.: Hybrid Ceramic/Metallic Recuperator for SOFC Generator, Office of Fossil Energy Fuel Cell Program, FY 2007 Annual Report, pp 205-207, http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/projects/balance_planty brid%20Ceramic%20Metallic%20Recuperator.pdf
- [14] WESTPIIALEN D., DIECKMANN J., SINGH A. i in.: Low-Cost, High-Temperature Recuperators for SOFC Fabricated from Titanium Aluminum Carbide (TiiAlC), Office of Fossil Energy Fuel Cell Program, FY 2007 Annual Report, 219-221
- [15] SCHULTE-FISCHEDICK J., DREIßIGACKER V., TAMME R.: An innovative ceramic high temperature plate-fin heat exchanger for EFCC processes, Appl Therm Eng 27 (2007) 1285-1294
- [16] HURLEY J.P., SEERY D.J., ROBSON F.L.: Experience with an ODS High-Temperature Heat Exchanger in a Pilot-Scale HiPPS Plant, Materials at High Temperatures, 20, (2003), 39-44.
- [17] SINGHAL S. C. (ED.), KENDALL K. (Ed.): High temperature solid oxide fuel cells: fundamentals, design and applications, Oxford, Amsterdam, Elsevier 2003
- [18] VIELSTICH W. (ED.), GASTEIGER H. A. (ED.),. LAMM A (Ed.), Handbook of Fuel Cells -Fundamentals, Technology and Applications, vol. 1-4, Chichester, Wiley 2003.
- [19] MOLENDA J.: Wysokotemperaturowe tlenkowe ogniwa paliwowe, Materiały Konferencyjne, Konferencja Naukowa Sieci ZSE, Zakopane, 12-14 października 2005,46-55.
- [20] ISAIHARA T.: Novel electrolytes operating at400-600°C, in Handbook of Fuel Cells -Fundamentals, Technology and Applications, Edited by W. Vielstich, H. A. Gasteiger, A. Lamm, vol. 4, pp. 1109-1122, PA John Wiley & Sons 2003.
- [21] KHARTON V.V., MARQUES F.M.B., ATKINSON A.: Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 174 (2004) 135-149.
- [22] SŁOWIŃSKI G.: Some Technical Issues of Zero-Emission Coal Technology, Int J Ilydr Ene 31 (2006) 1091-1102.
- [23] ZIOCK, H.J., 1, GARZON, F.H., BROSHA, E.L. i in.: Technical Progress in the Development of Zen Emission Coal Technologies, 19th Annual Pittsburgh Coal Combustion Conference, September 23-27,2002.
- [24] AGUILAR L., ZHA S., CHENG Z., et al.: A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels,} Power Sources 135 (2004)17-24.
- [25] BREDESEN R., JORDAL K., BOLLAND O.: High-temperature membranes in power generation with CO2 capture, Chemical Engineering and Processing 43 (2004) 1129-1158.
- [26] BUXBAUM R.E., KINNEY A.B.: Hydrogen transport through tubular membranes of palladium-coated tantalum and nobium, Ind. Eng. Chem. Res. 30 (1991) 591-594.
- [27] GADE S., SCHALLER R, BERLAND B. i in.: Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Plants, 20th Annual International Pittsburgh Coal Conference, Coal-Energy and the Environment, September 15-19,2003.
- [28] ISHIDA M.JIN 11., OKAMOTO T.: A Fundamental Study of a New Kind of Medium Material for Chemical-Looping Combustion, Energy & Fuels 1996,10,958-963.
- [29] WOLF J.: C02 Mitigation in Advanced Power Cycles - Chemical Looping Combustion and Steam-Based Gasification,Doctoral Thesis, KTH - Royal Institute of Technology, Stockholm 2004, www.diva-portal.org/diva/getDocument?um_nbn_se_kth_diva-77-l fulltext.pdf
- [30] www.alchemix.net
- [31] HACKER V., FANKIIAUSER R., FALESCIIINI G. i in.: Hydrogen production by steam-iron process, }. Power Sources 2000; 86 (1-2): 531-535.
- [32] SALVADOR C, LU D., ANTHONY E.J. i in.: Enhancement of CaO for C O2 capture in an FBC environment, Chem Eng J 2003, 96,187-95.
- [33] LIN S.Y., HARADA M., SUZUKI Y. i in.: Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING), Energy Conv. Management 46 (2005), 869-880.
- [34] RIZEQ G., FRYDMAN A., SUBIA R. i in.: Unmixed Fuel Processor Pilot-Scale System Design and Initial Experimental Results, 29th International Conference on Coal Utilization & Fuel Systems, Clearwater, Flor-ida, USA, April 18-22, 2004.
- [35] JODY, B-J.; DANIELS, E.J.; WOLSKY, A.M.: Integrating O2 production with power systems to capture CO2, Energy Conv. Mgmt 38 (1997) S135-S140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f0212cd-19f5-4acf-8063-7c459e0fb4e2