PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Water Storage Changes in Southeastern Anatolia, Turkey, using GRACE and GLDAS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With climatic changes, access to freshwater resources becomes more limited. Correspondingly, water monitoring methods in sensitive or critical areas in terms of groundwater amount are becoming increasingly important. The monitoring of the water levels in these regions, using appropriate methods and data sets, is highly effective in preventing possible future water crises. This paper aims estimated water storage changes with available tools and data in southeastern Anatolia, Turkey, where hydroclimatological studies are scarce due to limited observations. Data obtained from the Gravity Recovery and Climate Experiment satellite mission and the Global Land Data Assimilation System were used for the analysis of water storage changes in the study area. The results demonstrate that water storage shows a downward trend in all subareas, particularly in high-elevation regions. In addition, climatic changes have both short- and long-term impacts on water storage. Climatic variables (increasing temperature and decreasing precipitation) showed the highest correlation with water storage at 2-month lags. The monitoring of water storage is crucial for the region, and our results confirm the major role of such monitoring in decision-making processes and water resource management.
Twórcy
  • Konya Technical University, Department of Geomatics Engineering, Konya, Turkey
Bibliografia
  • Akhtar F., Nawaz R.A., Hafeez M., Awan U.K., Borgemeister C., Tischbein B., 2022, Evaluation of GRACE derived groundwater storage changes in different agro-ecological zones of the Indus Basin, Journal of Hydrology, 605, DOI: 10.1016/j.jhydrol.2021.127369.
  • Ali S., Wang Q., Liu D., Fu Q., Rahaman M.M., Faiz M.A., Cheema M.J.M., 2022, Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite, Journal of Hydrology, 605, DOI: 10.1016/j.jhydrol.2021.127315.
  • Al-Zyoud S., Rühaak W., Forootan E., Sass I., 2015, Over exploitation of groundwater in the centre of Amman Zarqa Basin - Jordan: evaluation of well data and GRACE satellite observations, Resources, 4 (4), 819-830, DOI: 10.3390/resources4040819.
  • Chao N., Luo Z., Wang Z., Jin, T., 2018, Retrieving groundwater depletion and drought in the Tigris‐Euphrates Basin between 2003 and 2015, Groundwater, 56 (5), 770-782, DOI: 10.1111/gwat.12611.
  • Dubey S.K., Lal P., Choudhari P., Sharma A., Dubey A.K., 2022, Assessment of long-term groundwater variation in India using GLDAS reanalysis, [in:] Advances in Remediation Techniques for Polluted Soils and Groundwater, P.K. Gupta, B. Yadav, S.K. Himanshu (es.), Elsevier, 219-232, DO: 10.1016/B978-0-12-823830-1.00018-3.
  • Famiglietti J.S., Lo M., Ho S.L., Bethune J., Anderson K.J., Syed T.H, Swenson S.C., de Linage C.R., Rodell M., 2011, Satellites measure recent rates of groundwater depletion in California′s Central Valley, Geophysical Research Letters, 38 (3), DOI: 10.1029/2010GL046442.
  • FAO, 2021, Irrigation, Water Development and Management Unit, Food and Agriculture Organization, available online https://www.fao.org/3/cb7654en/cb7654en.pdf (data access 06.05.2022).
  • Feng W., Zhong M., Lemoine J.-M., Biancale R., Hsu H.-T., Xia J., 2013, Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements, Water Resources Research, 49 (4), 2110-2118, DOI: 10.1002/wrcr.20192.
  • Forootan E., Khandu K., Awange J.L., Schumacher M., Anyah R.O., van Dijk A.I.J.M., Kusche J., 2016, Quantifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over Australia, Remote Sensing of Environment, 172, 50-66, DOI: 10.1016/j.rse.2015.10.027.
  • GAP Administration, 2016, GAP Status Report, Republic Of Turkey Ministry of Industry and Technology, in Turkish, Ankara.
  • GES DISC, 2022, Global LDAS, available online https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS (data access 06.05.2022).
  • Godah W., Szelachowska M., Öztürk E.Z., Krynski J., 2018, On the contribution of physical height changes estimated with the use of GRACE satellite mission data to the modernization of a national vertical system, [in:] American Geophysical Union, Fall Meeting: Abstracts, G13B-0525.
  • GSFC, 2022, Mascon Solutions, available online https://ccar.colorado.edu/grace/gsfc.html (data access 06.05.2022).
  • Günal N., 2013, Snowfall, snow cover duration and snow line elevation in Turkey, (in Turkish), Acta Turcıca, 5, 1-13.
  • Huang Z., Pan Y., Gong H., Yeh P.J.-F., Li X., Zhou D., Zhao W., 2015, Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain, Geophysical Research Letters, 42 (6), 1791-1799, DOI: 10.1002/2014gl062498.
  • Hussain D., Khan A.A., Hassan S.N.U., Naqvi S.A.A., Jamil A., 2021, A time series assessment of terrestrial water storage and its relationship with hydro-meteorological factors in Gilgit-Baltistan region using GRACE observation and GLDAS-Noah model, SN Applied Sciences, 3 (5), 1-11, DOI: 10.1007/s42452-021-04525-4.
  • Jiao J.J., Zhang X., Liu Y., Kuang X., 2015, Increased water storage in the Qaidam Basin, the North Tibet plateau from GRACE gravity data, Plos One, 10 (10), DOI: 10.1371/journal.pone.0141442.
  • Joodaki G., Wahr J., Swenson S., 2014, Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations, Water Resources Research, 50 (3), 2679-2692, DOI: 10.1002/2013WR014633.
  • Kayhan M., Alan İ., 2012, The spatial precipitation analysis of Turkey in 1971-2010, General Directorate of Meteorology Publications, Ankara, 98 pp.
  • Long D., Chen X., Scanlon B., Wada Y., Hong Y., Singh V., Yaning C., Wang C., Han Z., Yang W., 2016, Have GRACE satellites overestimated groundwater storage depletion in the Northwest India aquifers?, Scientific Reports, 6 (1), 24398, DOI: 10.1038/srep24398.
  • Madani K., 2014, Water management in Iran: what is causing the looming crisis?, Journal of Environmental Studies and Sciences, 4, 315-328, DOI: 10. 1007/s13412-014-0182-z.
  • Massoud E.C., Liu Z., Shaban A., Hage M.E., 2021, Groundwater depletion signals in the Beqaa Plain, Lebanon: evidence from GRACE and sentinel-1 data, Remote Sensing, 13 (5), 915, DOI: 10.3390/rs13050915.
  • Moghim S., 2020, Assessment of Water Storage Changes Using GRACE and GLDAS, Water Resources Management, 34 (2), 685-697, DOI: 10.1007/s11269-019-02468-5.
  • Nie N., Zhang W., Chen H., Guo H., 2018, A global hydrological drought index dataset based on gravity recovery and climate experiment (GRACE) data, Water Resources Management, 32, 1275-1290, DOI: 10.1007/s11269-017-1869-1.
  • Öztürk E.Z., 2020, Estimation and analysis of physical height changes using satellite gravimetry: case studies in Turkey and Greenland, PhD thesis, Konya Technical University Institute of Graduate Studies, Konya.
  • Öztürk E.Z., 2022, Monitoring total water storage changes with GRACE mission and GLDAS model and effect of climatic factors on these changes: case study in Konya Basin, (in Turkish), Doğal Afetler ve Çevre Dergisi, 8 (1), 103-110, DOI: 10.21324/dacd.971834.
  • Öztürk E.Z., Godah W., Abbak R.A., 2018, Analysis of De-correlation filters performance for estimating temporal mass variations determined from GRACE-based GGMs over Konya basin, [in:] FIG Congress 2018, Embracing our smart world where the continents connect: enhancing the geospatial maturity of societies, May 6-11, İstanbul, Turkey.
  • Öztürk E.Z., Godah W., Abbak R.A., 2020, Estimation of physical height changes from GRACE satellite mission data and WGHM over Turkey, Acta Geodaetica et Geophysica, 55 (2), 301-317, DOI: 10.1007/s40328-020-00294-5.
  • Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D., Toll D., 2004, The global land data assimilation system, Bulletin of the American Meteorological Society, 85 (3), 381-394, DOI: 10.1175/BAMS-85-3-381.
  • Rodell M., Velicogna I., Famiglietti J.S., 2009, Satellite-based estimates of groundwater depletion in India, Nature, 460, 999-1002, DOI: 10.1038/nature08238.
  • Sahoo S., Chakraborty S., Pham Q.B., Sharifi E., Sammen S.S., Vojtek M., Vojtekova J., Elkhrachy I., Costache R., Linh N.T.T., 2021, Recognition of district-wise groundwater stress zones using the GLDAS-2 catchment land surface model during lean season in the Indian state of West Bengal, Acta Geophysica, 69 (1), 175-198, DOI: 10.1007/s11600-020-00509-x.
  • Salem G.S.A., Kazama S., Komori D., Shahid S., Dey N.C., 2017, Optimum abstraction of groundwater for sustaining groundwater level and reducing irrigation cost, Water Resources Management, 31, 1947-1959, DOI: 10.1007/s11269-017- 1623-8.
  • Scanlon B.R., Longuevergne L., Long D., 2012, Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA, Water Resources Research, 48 (4), DOI: 10.1029/2011WR011312.
  • Syed T.H., Famiglietti J.S., Rodell M., Chen J., Wilson C.R., 2008, Analysis of terrestrial water storage changes from GRACE and GLDAS, Water Resources Research, 44 (2), DOI: 10.1029/2006WR005779.
  • Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F., Watkins M.M., 2004a, GRACE measurements of mass variability in the Earth system, Science, 305 (5683), 503-505, DOI: 10.1126/science.1099192.
  • Tapley B.D., Bettadpur S., Watkins M.M., Reigber C., 2004b, The gravity recovery and climate experiment: mission overview and early results, Geophysical Research Letters, 31 (9), DOI: 10.1029/2004GL019920.
  • Tayanç M., İm U., Doğruel M., Karaca M., 2009, Climate change in Turkey for the last half century, Climatic Change, 94 (3), 483- 502, DOI: 10.1007/s10584-008-9511-0.
  • Tayanç M., Toros H., 1997, Urbanization effects on regional climate change in the case of four large cities of Turkey, Climatic Change, 35 (4), 501-524, DOI: 10.1023/A:1005357915441.
  • Tiwari V.M., Wahr J., Swenson S., 2009, Dwindling groundwater resources in northern India, from satellite gravity observations, Geophysical Research Letters, 36 (18), DOI: 10.1029/2009GL039401.
  • Tiwari V.M., Wahr J.M., Swenson S., Singh B., 2011, Land water storage variation over southern India from space gravimetry, Current Science, 111 (4), 536-541.
  • Voss K.A., Famiglietti J.S., Lo M., de Linage C., Rodell M., Swenson S.C., 2013, Ground water depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris - Euphrates - Western Iran region, Water Resources Research, 49 (2), 904-914, DOI: 10.1002/wrcr.20078.
  • Wang H., Xiang L., Steffen H., Wu P., Jiang L., Shen Q., Li Z., Hayashi M., 2022, GRACE-based estimates of groundwater variations over North America from 2002 to 2017, Geodesy and Geodynamics, 13 (1), 11-23, DOI: 10.1016/j.geog.2021.10.003.
  • Wouters B., Bonin J.A., Chambers D.P., Riva R.E.M., Sasgen I., Wahr J., 2014, GRACE, time-varying gravity, earth system dynamics and climate change, Reports on Progress in Physics, 77 (11), DOI: 10.1088/0034-4885/77/11/116801.
  • Yılmaz Y.A., Sen O.L., Turuncoglu U.U., 2019, Modeling the hydroclimatic effects of local land use and land cover changes on the water budget in the upper Euphrates - Tigris basin, Journal of Hydrology, 576, 596-609, DOI: 10.1016/j.jhydrol.2019.06.074.
  • Yin W., Li T., Zheng W., Hu L., Han S.-C., Tangdamrongsub N., Sprlak M., Huang Z., 2020, Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia, Hydrogeology Journal, 28, 1809-1825, DOI: 10.1007/s10040-020-02157-3.
  • Zhang J., Liu K., Wang M., 2021, Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods, Remote Sensing, 13 (3), 523, DOI: 10.3390/rs13030523.
  • Zhang X., Ren L., Feng W., 2022, Comparison of the shallow groundwater storage change estimated by a distributed hydrological model and GRACE satellite gravimetry in a well-irrigated plain of the Haihe River basin, China, Journal of Hydrology, 610, DOI: 10.1016/j.jhydrol.2022.127799.
  • Zhang Y., Pan M., Sheffield J., Siemann A.L., Fisher C.K., Liang M., Beck H.E., Wanders N., MacCracken R.F., Houser P.R., Zhou T., Lettenmaier D.P., Pinker R.T., Bytheway J., Kummerow C.D., Wood E.F., 2018, A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010, Hydrology and Earth System Sciences, 22 (1), 241-263, DOI: 10.5194/hess-22-241-2018.
  • Zheng Z., Ning L., Dai D., Chen L., Wang Y., Ma Z., Yang Z.-L., Zhan C., 2022, Water budget variation, groundwater depletion, and water resource vulnerability in the Haihe River Basin during the new millennium, Physics and Chemistry of the Earth, Parts A/B/C, DOI: 10.1016/j.pce.2022.103141.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eff1351-f853-4cf4-9af5-3ec3766b03aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.